Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 23,
  • pp. 3676-3686
  • (2013)

Adaptive Receiver for Indoor Visible Light Communications

Not Accessible

Your library or personal account may give you access

Abstract

Visible light communications seeks to leverage an unused medium for indoor wireless communications. A major goal is to deliver very high data-rates through LED luminaires to all places where we use lighting. However, the characteristics of LEDs and the nature of indoor lighting conspire to distort the signals. Illumination powers LEDs have low signaling bandwidth and exhibit severe frequency distortion. Their wide dispersion patterns, required for light and signal coverage, also add multipath distortion. Intermittent shadowing results in a wide range of channel characteristics. In this paper we address these challenges with an adaptive receiver. Namely, training is used to identify channel impairments, and our proposed receiver applies specific countermeasures including threshold detection, RAKE reception and adaptive channel equalization. Analysis and simulation demonstrate that our design mitigates distortion problems yielding a performance improvement of 40% to 100% with respect to the current literature in achievable bit-rate depending on the propagation scenario.

© 2013 EU

PDF Article
More Like This
Uniformity improvement on received optical power for an indoor visible light communication system with an angle diversity receiver

Sihui Chi, Ping Wang, Shuqiang Niu, Hui Che, Zhao Wang, and Yiran Wu
Appl. Opt. 60(26) 8031-8037 (2021)

Evolutionary algorithm based uniform received power and illumination rendering for indoor visible light communication

Jupeng Ding, Zhitong Huang, and Yuefeng Ji
J. Opt. Soc. Am. A 29(6) 971-979 (2012)

Design Concepts and Performance Analysis of Multicarrier CDMA for Indoor Visible Light Communications

Morteza H. Shoreh, Ahmad Fallahpour, and Jawad A. Salehi
J. Opt. Commun. Netw. 7(6) 554-562 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.