Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 3,
  • pp. 476-481
  • (2013)

Design of Asymmetric Large-mode Area Optical Fiber With Low-bending Loss

Not Accessible

Your library or personal account may give you access

Abstract

We propose the design of a simple large-mode area microstructured optical fiber with low bending loss and large loss difference between the fundamental mode and the high-order modes. Single-mode operation in the fiber is realized by the introduction of small diameter holes, whereas the bending loss of the fiber is realized by the introduction of three large holes in the two-ring hole microstructured optical fiber. We also introduce low-index rods into the core of the fiber, which can effectively compensate the reduction of mode area induced by bending the fiber.

© 2012 IEEE

PDF Article
More Like This
Design of all-solid leakage channel fibers with large mode area and low bending loss

Kunimasa Saitoh, Yukihiro Tsuchida, Lorenzo Rosa, Masanori Koshiba, Federica Poli, Annamaria Cucinotta, Stefano Selleri, Mrinmay Pal, Mukul Paul, Debashri Ghosh, and Shyamal Bhadra
Opt. Express 17(6) 4913-4919 (2009)

Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis

Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 55(9) 2306-2311 (2016)

Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications

Than Singh Saini, Ajeet Kumar, and Ravindra Kumar Sinha
Appl. Opt. 53(31) 7246-7251 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.