OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 4 — Feb. 15, 2013
  • pp: 563–570

Power Saving Techniques and Mechanisms for Optical Access Networks Systems

Jun-ichi Kani

Journal of Lightwave Technology, Vol. 31, Issue 4, pp. 563-570 (2013)


View Full Text Article

Acrobat PDF (1043 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This tutorial paper provides an overview of studies and works to address the power saving issue in the optical access network (OAN), which typically comprises passive optical networks (PONs) and Ethernet aggregators (EAs). First, it describes techniques to reduce the power consumption of the optical network unit in each subscriber's home. It outlines methods standardized in ITU-T such as “dozing” and “cyclic sleep,” as well as elucidating other techniques. Next, power saving at the optical line terminal (OLT)/EA side is focused. The energy-aware operation of link aggregation and its application to OAN are described to decrease power consumed by the EAs used with time-division multiaccess (TDMA) PONs. Finally, a selective OLT sleep technique is introduced for the next-generation wavelength division multiplexing (WDM)-TDMA PON with wavelength routing technologies.

© 2012 IEEE

Citation
Jun-ichi Kani, "Power Saving Techniques and Mechanisms for Optical Access Networks Systems," J. Lightwave Technol. 31, 563-570 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-4-563


Sort:  Year  |  Journal  |  Reset

References

  1. W. Vereecken, W. Van Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martens, P. Demeester, "Power consumption in telecommunication networks: Overview and reduction strategies," IEEE Commun. Mag. 49, 62-69 (2011).
  2. Gigabit-Capable Passive Optical Networks (GPON) ITU-T Recommendation G.984 series.
  3. Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks IEEE Standard 802.3ah- 2004.
  4. IDATE News Release (2011).
  5. A. Gladisch, C. Lange, R. Leppla, "Power efficiency of optical versus electronic access networks," Proc. 34th Eur. Conf. Opt. Commun. (2008) pp. 1-4.
  6. A. Otaka, "Power saving ad-hoc report," IEEE 802.3 Interim Meet. SeoulKorea (2008).
  7. GPON Power Conservation ITU-T Series G Supplement 45.
  8. J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, S. Rodrigues, "Next-generation PON—Part I: Technology roadmap and general requirements," IEEE Commun. Mag. 47, 43-49 (2009).
  9. 10 Gigabit-Capable Passive Optical Networks (XG-PON) ITU-T Recommendation G.987 series.
  10. Media Access Control Parameters, Physical Layers, and Management Parameters for Energy-Efficient Ethernet IEEE Standard 802.3az-2010.
  11. A. R. Dhaini, P. H. Ho, G. Shen, "Toward green next-generation passive optical networks," IEEE Commun. Mag. 49, 94-101 (2011).
  12. L. Valcarenghi, "Solutions for energy-efficient passive optical network," ITU-T Study Group 15 Meet. GenevaSwitzerland (2011).
  13. J. Kani, S. Shimazu, N. Yoshimoto, H. Hadama, "Energy efficient optical access networks—Issues and technologies," IEEE Commun. Mag. .
  14. J. Mandin, "EPON powersaving via sleep mode," IEEE 802.3 Interim Meet. SeoulKorea (2008).
  15. S. W. Wong, S. H. Yen, P. Afshar, S. Yamashita, L. G. Kazovsky, "Demonstration of energy conserving TDM-PON with sleep mode ONU using fast clock recovery circuit," Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. San DiegoCA (2010) Paper OThW7.
  16. N. Suzuki, K. Kobiki, E. Igawa, J. Nakagawa, "Dynamic sleep-mode ONU with self-sustained fast-lock CDR for power saving in 10 G-EPON systems," 37th Eur. Conf. Opt. Commun. GenevaSwitzerland (2011) Paper We.8.C.4.
  17. Y. Yan, S. W. Wong, L. Valcarenghi, S. H. Yen, D. R. Campelo, S. Yamashita, L. Kazovsky, L. Dittmann, "Energy management mechanism for Ethernet passive optical networks (EPONs)," Proc. 2010 IEEE Int. Conf. Commun. (2010) pp. 1-5.
  18. S. Nishihara, H. Nomura, H. Ujikawa, T. Sakamoto, J. Kani, M. Tadokoro, N. Yoshimoto, "Highly-efficient ONU power-saving technique with HGW-determined sleep pattern toward next-generation optical access systems," Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (2012).
  19. C. Gunaratne, K. Christensen, B. Nordman, S. Suen, "Reducing the energy consumption of Ethernet with adaptive link rate (ALR)," IEEE Trans. Comput. 57, 448-461 (2008).
  20. F. Blanquicet, K. Christensen, "An initial performance evaluation of rapid PHY selection (RPS) for energy efficient Ethernet," Proc. 32nd IEEE Conf. Local Comput. Netw. (2007) pp. 223-225.
  21. R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto, H. Hadama, "Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10 G-EPON," IEEE J. Opt. Commun. Netw. 2, 716-729 (2010).
  22. L. Valcarenghi, D. P. Van, P. Castoldi, "How to save energy in passive optical networks," Proc. 13th Int. Conf. Transp. Opt. Netw. (2011) pp. 1-5.
  23. P. Vetter, "GreenTouch wireline access WG roadmap," GreenTouch Forum SeattleWA (2011).
  24. K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, J. A. Maestro, "IEEE 802.3az: The road to energy efficient Ethernet," IEEE Commun. Mag. 48, 50-56 (2010).
  25. H. Imaizumi, T. Nagata, G. Kunito, K. Yamazaki, H. Morikawa, "Power saving mechanism based on simple moving average for 802.3ad link aggregation," Proc. 2nd IEEE Global Commun. Conf. Workshop (2009) pp. 1-6.
  26. S. Shimazu, J. Kani, N. Yoshimoto, H. Hadama, "Novel sleep control for EPON optical line terminal employing layer-2 switch functions," Proc. IEEE Global Commun. Conf. (2010) pp. 1-5.
  27. J. Kani, "Enabling technologies for future scalable and flexible WDM-PON and WDM/TDM-PON systems," IEEE J. Sel. Topics Quantum Electron. 16, 1290-1297 (2010).
  28. Y.-L. Hsueh, M. S. Rogge, S. Yamamoto, L. G. Kazovsky, "A highly flexible and efficient passive optical network employing dynamic wavelength allocation," J. Lightw. Technol. 23, 277-286 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited