OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 4 — Feb. 15, 2013
  • pp: 672–680

Terabit/Sec VCSEL-Based 48-Channel Optical Module Based on Holey CMOS Transceiver IC

Fuad E. Doany, Benjamin G. Lee, Daniel M. Kuchta, Alexander V. Rylyakov, Christian Baks, Christopher Jahnes, Frank Libsch, and Clint L. Schow

Journal of Lightwave Technology, Vol. 31, Issue 4, pp. 672-680 (2013)


View Full Text Article

Acrobat PDF (1478 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We report here on the design, fabrication and characterization of 48-channel parallel optical transceivers demonstrating terabit/sec data transfer rate. The 0.48 Tb/s transmit plus 0.48 Tb/s receive throughput was achieved using a second-generation single-chip holey CMOS transceiver IC. In addition to 24 receiver (RX) and 24 laser diode driver circuits, the 5.2 mm × 5.8 mm single CMOS chip incorporates 48 through-substrate optical vias (holes), one for each transmitter (TX) and RX channel. A complete holey Optochip is formed following direct flip-chip attachment of 24-channel 850-nm VCSEL and PD arrays. The 48 optical vias enable optical access to the 24 VCSELs and 24 PDs. The holey Optochip concept provides a dense chip-scale package which is fully compatible with industry-standard top emitting/detecting 850-nm VCSELs/PDs providing optimized high-speed performance through close integration of the optoelectronic (OE) devices with their drive electronics. Furthermore, the optical vias and OE devices are arranged in a 4 × 12 array on 250 µm × 250 µm pitch to facilitate direct fiber-coupling to a standard 4 × 12 multi-mode fiber array.The Optochips are packaged into complete modules by flip-chip soldering to high-density, high-speed organic carriers. A pluggable connector soldered to the bottom of the carrier provides all module electrical I/O. The 18 mm × 18 mm overall module area is dictated by the 0.8 mm-pitch ball grid array (BGA) of the organic carrier and connector. Fully functional holey Optomodules with 24 TX and 24 RX channels operate up to 20 Gb/s/ch achieving efficiencies (including both TX and RX) of 7.3 pJ/bit. The terabit/sec data rate (480 Gb/s TX + 480 Gb/s RX) is highest reported for single-chip CMOS transceiver modules.

© 2012 IEEE

Citation
Fuad E. Doany, Benjamin G. Lee, Daniel M. Kuchta, Alexander V. Rylyakov, Christian Baks, Christopher Jahnes, Frank Libsch, and Clint L. Schow, "Terabit/Sec VCSEL-Based 48-Channel Optical Module Based on Holey CMOS Transceiver IC," J. Lightwave Technol. 31, 672-680 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-4-672


Sort:  Year  |  Journal  |  Reset

References

  1. D. Grice, H. Brandt, C. Wright, P. McCarthy, A. Emerich, T. Schimke, C. Archer, J. Carey, P. Sanders, J. A. Fritzjunker, S. Lewis, P. Ger-mann, "Breaking the petaflops barrier," IBM J. Res. Dev. 53, 1-16 (2009) paper 1.
  2. "National center for computational sciences," Oak RidgeTN (2010) http://www.nccs.gov/jaguar/.
  3. A. F. Benner, D. M. Kuchta, P. K. Pepeljugoski, R. A. Budd, G. Hougham, B. V. Fasano, K. Marston, H. Bagheri, E. J. Seminaro, H. Xu, D. Meadowcroft, M. H. Fields, L. McColloch, M. Robinson, F. W. Miller, R. Kaneshiro, R. Granger, D. Childers, E. Childers, "Optics for high-performance servers and supercomputers," Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (2010) pp. 1-3.
  4. M. H. Fields, J. Foley, R. Kaneshiro, L. McColloch, D. Meadowcroft, F. W. Miller, S. Nassar, M. Robinson, H. Xu, "Transceivers and optical engines for computer and datacenter interconnects," Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (2010) pp. 1-2.
  5. K. Yashiki, Y. Hashimoto, M. Oda, N. Suzuki, K. Yamamoto, M. Kurihara, T. Sugimoto, H. Hatakeyama, J. Sakai, T. Akagawa, K. Narita, H. Ono, K. Fukatsu, K. Tokutome, H. Kouta, M. Tsuji, I. Ogura, A. Noda, T. Anan, Y. Suzuki, K. Kurata, "240-Gb/s on-board optical transmitters and receivers," Proc. Opt. Fiber Commun. Conf./Nat. Fiber Opt. Eng. Conf. (2010).
  6. C. L. Schow, F. E. Doany, A. V. Rylyakov, B. G. Lee, C. Jahnes, Y. Kwark, C. Baks, D. M. Kuchta, J. A. Kash, "A 24-channel 300 Gb/s 8.2 pJ/bit full-duplex fiber-coupled optical transceiver module based o.n a single holey CMOS IC," J. Lightw. Technol. 29, 542-553 (2011).
  7. F. E. Doany, C. L. Schow, B. G. Lee, A. V. Rylyakov, C. Jahnes, Y. Kwark, C. Baks, D. M. Kuchta, J. A. Kash, "Dense 24 Tx+24 Rx fiber-coupled optical module based on a Holey CMOS transceiver IC," Proc. ECTC (2010) pp. 247-255.
  8. A. V. Rylyakov, C. L. Schow, B. G. Lee, F. E. Doany, C. W. Baks, J. A. Kash, "Transmitter predistortion for simultaneous improvements in bit rate, sensitivity, jitter, and power efficiency in 20 Gb/s CMOS-driven VCSEL links," J. Lightw. Technol. 30, 399-405 (2012).
  9. N. Y. Li, C. L. Schow, D. M. Kuchta, F. E. Doany, B. G. Lee, W. Luo, C. Xie, X. Sun, K. P. Jackson, C. Lei, "High-performance 850 nm VCSEL and photodetector arrays for 25 Gb/s parallel optical interconnects," Proc. OFC (2010).
  10. Endicott interconnect technologies, Inc.EndicottNY http://www.endicottinterconnect.com/.
  11. Interconnect Systems Inc.CamarilloCA http://www.isipkg.com/.
  12. C. L. Schow, F. E. Doany, C. W. Baks, Y. H. Kwark, D. M. Kuchta, J. A. Kash, "A single-chip CMOS-based parallel optical transceiver capable of 240-Gb/s bidirectional data rates," J. Lightw. Technol. 27, 915-929 (2009).
  13. D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, R. Rogers, M. Ritter, J. Jewell, L. A. Graham, K. Schrodinger, A. Schild, H.-M. Rein, "120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station," J. Lightw. Technol. 22, 2200-2212 (2004).
  14. F. E. Doany, C. L. Schow, C. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. Offrein, J. A. Kash, "160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers," IEEE Trans. Adv. Packaging 32, 345-359 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited