OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 4 — Feb. 15, 2013
  • pp: 681–688

Amplification in Extended Transmission Bands Using Bismuth-Doped Optical Fibers

Evgeny M. Dianov

Journal of Lightwave Technology, Vol. 31, Issue 4, pp. 681-688 (2013)


View Full Text Article

Acrobat PDF (1410 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Bismuth-doped optical glasses emit NIR luminescence in an ultrabroad spectral region of 1000–2000 nm. It makes Bi-doped glasses and glass optical fibers a promising active medium for the creation of Bi-doped fiber lasers and broadband optical amplifiers for this spectral region. Since the first fabrication of Bi-doped fibers in 2005 a large number of papers devoted to the development of Bi-doped fiber lasers and optical amplifiers have been published. It has been shown that Bi-doped fibers are a new breakthrough in active laser materials.But there still remains one important problem—up to now the nature of the Bi-related NIR emitting centers is not clear. This prevents one to optimize the technology and compositions of Bi-doped fibers to improve the parameters of Bi-doped fiber devices.This paper reviews the recent results on the luminescence properties of various Bi-doped optical fibers and the development of Bi-doped fiber lasers and optical amplifiers for the 1150–1550 nm spectral region.

© 2012 IEEE

Citation
Evgeny M. Dianov, "Amplification in Extended Transmission Bands Using Bismuth-Doped Optical Fibers," J. Lightwave Technol. 31, 681-688 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-4-681


Sort:  Year  |  Journal  |  Reset

References

  1. T. Morioka, "New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond," Proc. Optoelectron Commun. Conf. (2009).
  2. Y. Fujimoto, M. Nakatsuka, "Infrared luminescence from bismuth-doped silica glass," Jpn. J. Appl. Phys. 40, L279-L281 (2001).
  3. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, A. N. Guryanov, "CW bismuth fiber laser," Quantum Electron. 35, 1083-1084 (2005).
  4. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, J. Qiu, "Discussion on the origin of NIR emission from Bi-doped materials," J. Non-Cryst. Solids 357, 2241-2245 (2011).
  5. E. M. Dianov, "Bi-doped glass optical fibers: Is it a new breakthrough in laser materials?," J. Non-Cryst. Solids 355, 1861-1864 (2009).
  6. T. Suzuki, Y. Ohishi, "Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass," Appl. Phys. Lett. 88, 191912-1-191912-3 (2006).
  7. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, D. W. Hewak, "Ultrabroadband emission from a bismuth-doped chalcogenide glass," Opt. Exp. 17, 19345-19355 (2009).
  8. Sh. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, J. Qiu, "Broadband optical amplification in Bi-doped germanium silicate glass," Appl. Phys. Lett. 91, 061919-1-061919-3 (2007).
  9. R. W. Douglas, P. Nath, A. Paul, "Oxigen ion activity and its influence on the redox equilibrium in glasses," Phys. Chem. Glasses 6, 216-223 (1965).
  10. J. D. Corbett, Progress in Inorganic Chemistry (Wiley, 1976) pp. 129-158.
  11. S. Khonthon, Sh. Morimoto, Y. Arai, Y. Ohishi, "Redox equilibrium and NIR luminescence of Bi2O3-containing glasses," Opt. Mater. 31, 1262-1268 (2009).
  12. S. Parke, R. S. Webb, "The optical properties of thallium, lead and bismuth in oxide glasses," J. Phys. Chem. Solids 34, 85-95 (1973).
  13. R. Reisfeld, L. Boehm, "Optical properties of bismuth in germanate, borax and phosphate glasses," J. Non-Cryst. Solids 16, 83-92 (1974).
  14. M. A. Hamstra, H. F. Folkerts, G. Blasse, "Red bismuth emission in alkaline-earth-metal sulfates," J. Mater. Chem. 4, 1349-1350 (1994).
  15. A. M. Srivastava, "Luminescence of divalent bismuth in (M2+BPO5 M2+ = Ba2+, Sr2+ and Ca2+)," J. Lumin. 78, 239-243 (1998).
  16. O. Sanz, E. Haro-Ponitovski, J. Gonzalo, J. M. F. Navarro, "Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption," J. Non-Cryst. Solids 352, 761-768 (2006).
  17. E. M. Dianov, "On the nature of new IR emitting Bi centers in glass," Quantum Electron. 40, 283-285 (2010).
  18. V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, A. N. Guryanov, "Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibers," Proc. Eur. Conf. Opt. Commun. (2005).
  19. T. Haruna, M. Kakui, T. Taru, Sh. Ishikawa, M. Onishi, "Silica-based bismuth-doped fiber for ultra broad band light source and optical amplification around 1.1 µm," Proc. Opt. Amplifiers Their Appl. Topical Meeting (2005).
  20. I. A. Bufetov, S. L. Semenov, V. V. Velmiskin, S. V. Firstov, G. A. Bufetova, E. M. Dianov, "Optical properties of active bismuth centers in silica fibers containing no other dopants," Quantum Electron. 40, 639-641 (2010).
  21. A. S. Zlenko, V. V. Dvoyrin, V. M. Mashinsky, A. N. Denisov, L. D. Iskhakova, M. S. Mayorova, O. I. Medvedkov, S. L. Semenov, S. A. Vasiliev, E. M. Dianov, "Furnace chemical vapor deposition bismuth-doped silica-core holey fiber," Opt. Lett. 36, 2599-2601 (2011).
  22. E. M. Dianov, "Bi-doped optical fibers: A new active medium for NIR lasers and amplifiers," Proc. SPIE (2008) pp. 6890H-1-6890H-11.
  23. I. A. Bufetov, E. M. Dianov, "Bi-doped fiber lasers," Laser Phys. Lett. 6, 487-504 (2009).
  24. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, M. Douay, "Efficient all-fiber bismuth-doped laser," Appl. Phys. Lett. 90, 031103-1-031103-3 (2007).
  25. M. P. Kalita, S. Yoo, J. Sahu, "Bismuth-doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance," Opt. Exp. 16, 21032-21038 (2008).
  26. V. G. Truong, L. Bigot, A. Lerouge, M. Douay, I. Razdobreev, "Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications," Appl. Phys. Lett. 92, 041908-1-041908-3 (2008).
  27. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, E. M. Dianov, "Combined excitation-emission spectroscopy of bismuth active centers in optical fibers," Opt. Exp. 19, 19551-19561 (2011).
  28. A. A. Krasnovsky, N. N. Drozdova, A. V. Ivanov, R. V. Ambartsumian, "Activation of molecular oxygen by infrared radiation in pigment-free aerobic systems," Biochemistry (Moscow) 68, 963-966 (2003).
  29. I. A. Bufetov, A. V. Shubin, S. V. Firstov, M. A. Melkumov, V. F. Khopin, A. N. Guryanov, E. M. Dianov, "High-power cw 1. 27 µm Bi-doped fiber laser," Proc. CLEO/EQEC. (2011).
  30. S. V. Firstov, A. V. Shubin, V. F. Khopin, I. A. Bufetov, A. N. Guryanov, E. M. Dianov, "The 20 W cw fiber laser at 1460 nm based on Si-associated bismuth active centers in germanosilicate fibers," Proc. CLEO/EQEC. (2011).
  31. E. M. Dianov, I. A. Bufetov, S. V. Firstov, A. V. Shubin, O. I. Medvedkov, M. A. Melkumov, "Bismuth-doped silica-based fiber lasers operating near 1460 nm," Proc. Europ. Conf. Opt. Commun. (2011).
  32. S. V. Firstov, A. V. Shubin, V. F. Khopin, M. A. Melkumov, I. A. Bufetov, O. I. Medvedkov, A. N. Guryanov, E. M. Dianov, "Bismuth-doped germanosilicate fiber laser with 20 W output power at 1460 nm," Quantum Electron. 41, 581-583 (2011).
  33. I. A. Bufetov, M. A. Melkumov, V. F. Khopin, S. V. Firstov, A. V. Shubin, O. I. Medvedkov, A. N. Guryanov, E. M. Dianov, "Efficient Bi-doped fiber lasers and amplifiers for the spectral region 1300–1500 nm," Proc. SPIE (2010) pp. 758014-1-758014-9.
  34. M. A. Melkumov, I. A. Bufetov, A. V. Shubin, S. V. Firstov, V. F. Khopin, A. N. Guryanov, E. M. Dianov, "LD pumped bismuth-doped optical fiber amplifier for 1430 nm band," Opt. Lett. 36, 2408-2410 (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited