OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 5 — Mar. 1, 2013
  • pp: 731–739

Realization of All-Optical Logic Gates in a Triangular Triple-Core Photonic Crystal Fiber

A. G. Coelho Jr., M. B. C. Costa, A. C. Ferreira, M. G. da Silva, M. L. Lyra, and A. S. B. Sombra

Journal of Lightwave Technology, Vol. 31, Issue 5, pp. 731-739 (2013)


View Full Text Article

Acrobat PDF (1373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose an all-optical logical gate based in a triple-core photonic fiber crystal operating with two ultrashort fundamental soliton pulses of 100 fs, with pulse amplitude modulation in the modality of amplitude shift keying (PAM-ASK) with binary amplitude modulation. In particular, we examine the performance of a triple-core PCF coupler to execute two-input logical functions. The pulse propagation is modelled by an extended nonlinear Schroedinger equation including the terms associated with the anomalous group-velocity dispersion (GVD) and the third-order dispersion β<sub>3</sub>, as well as the nonlinear effects of self-phase modulation (SPM), cross-phase modulation (XPM), self-steepening, and intrapulse Raman scattering (IRS) in a lossless configuration. Our results indicate the possibility of getting logical operations by controlling the phase difference between the input pulses.

© 2012 IEEE

Citation
A. G. Coelho Jr., M. B. C. Costa, A. C. Ferreira, M. G. da Silva, M. L. Lyra, and A. S. B. Sombra, "Realization of All-Optical Logic Gates in a Triangular Triple-Core Photonic Crystal Fiber," J. Lightwave Technol. 31, 731-739 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-5-731


Sort:  Year  |  Journal  |  Reset

References

  1. K. Z. Nóbrega, M. G. da Silva, A. S. B. Sombra, "Optical multistability on the asymmetric nonlinear directional coupler," J. Opt. Commun. 20, 210-214 (1999).
  2. P. A. Buah, B. M. A. Rahman, K. T. V. Grattan, "Numerical study of soliton switching in active three-core nonlinear fiber coupler," IEEE J. Quantum Electron 33, 874-878 (1997).
  3. P. L. K. Wa, J. E. Stich, N. J. Mason, J. S. Roberts, P. N. Robson, "All optical multiple-quantum well waveguide switch," Electron. Lett. 21, 26-28 (1985).
  4. J. Wilson, G. I. Stegeman, E. M. Wright, "Soliton switching in an erbium-doped nonlinear fiber coupler," Opt. Lett. 16, 1653-1655 (1991).
  5. R. A. Betts, T. Tjugiarto, Y. L. Xue, P. L. Chu, "Nonlinear refractive index in erbium doped optical fiber: Theory and experiment," IEEE J. Quantum Electron 27, 908-913 (1991).
  6. D. Y. Zang, S. R. Forest, "Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber," IEEE Photon. Technol. Lett. 4, 362-365 (1992).
  7. A. S. B. Sombra, "Bistable pulse collisions of the cubic-quintic nonlinear Schrödinger equation," Opt. Commun. 94, 92-98 (1992).
  8. K. Z. Nobrega, A. S. B. Sombra, "Optimum self phase modulation profile for nonlinear transmission recovery in twin core optical couplers with loss," Opt. Commun. 151, 31-34 (1998).
  9. M. Liu, K. S. Chiang, "Propagation of ultrashort pulses in a nonlinear two-core photonic crystal fiber," Opt. Exp. 18, 21261-21268 (2010).
  10. C. C. Yang, A. J. S. Wang, "Asymmetric nonlinear coupling and its applications to logic functions," IEEE J. Quantum Electron. 28, 479-487 (1992).
  11. H. J. Caulfield, R. A. Soref, C. S. Vikram, "Universal reconfigurable optical logic with silicon-on-insulator resonant structures," Photon. Nanostruct. 5, 14-20 (2007).
  12. S. Zeng, Y. Zhang, B. Li, E. Y. Pun, "Ultrasmall optical logic gates based on silicon periodic dielectric waveguides," Photon. Nanostruc 8, 32-37 (2010).
  13. D. J. Kaup, T. I. Lakoba, B. A. Malomed, "Asymmetric solitons in mismatched dual-core optical fibers," J. Opt. Soc. Amer. B 14, 1199-1206 (1997).
  14. J. Atai, Y. Chen, "Nonlinear mismatches between two cores of saturable nonlinear couplers," IEEE J. Quantum Electron 29, 242-249 (1993).
  15. H. Hatami-Hanza, P. L. Chu, "Logic operations in nonlinear fibre couplers," Opt. Commun. 124, 90-94 (1995).
  16. J. W. M. Menezes, W. B. de Fraga, G. F. Guimarães, A. C. Ferreira, H. H. B. Rocha, M. G. da Silva, A. S. B. Sombra, "Optical switches and all-fiber logical devices based on triangular and planar three-core nonlinear optical fiber couplers," Opt. Commun. 276, 107-115 (2007).
  17. W. B. Fraga, J. W. M. Menezes, M. G. da Silva, C. S. Sobrinho, A. S. B. Sombra, "All optical logic gates based in an asymmetric nonlinear directional coupler," Opt. Commun. 262, 32-37 (2006).
  18. J. S. Almeida, J. W. M. Menezes, W. B. Fraga, J. C. Sales, A. C. Ferreira, S. P. Marciano, A. F. G. Furtado Filho, M. G. Silva, A. S. B. Sombra, "Logic gates based in asymmetric couplers: Numerical analysis," Fiber Integr. Opt. 26, 217-228 (2007).
  19. M. G. Da Silva, A. S. B. Sombra, "All optical soliton switching in three core nonlinear fiber couplers," Opt. Commun. 145, 281-290 (1998).
  20. G. I. Stegman, E. M. Wright, "All-optical switching," Opt. Quantum Electron. 22, 95-122 (1990).
  21. J. M. Soto-Crespo, E. M. Wright, "All-optical of solitons in two and three-core nonlinear fiber couplers," J. Appl. Phys. 70, 7240-7243 (1991).
  22. S. Lee, J. Park, K. Lee, D. Eom, S. Lee, J. H. Kim, "All-optical exclusive NOR logic gate using mach-zehnder interferometer," J. Appl. Phys. 41, 1155-1157 (2002).
  23. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
  24. N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, "Nonlinearity in holey optical fibers: Measurement and future opportunities," Opt. Lett. 24, 1395-1397 (1999).
  25. D. J. G. Mestdagh, Fundamentals of Multiaccess Optical Fiber Networks (Artech House, 1995).
  26. X. Sang, P. I. Chiang, C. Yu, "Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications," Opt. Quantum Electron. 37, 965-994 (2005).
  27. K. E. Zoiros, G. Papadopoulos, T. Houbavlis, G. T. Kanellos, "Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer," Opt. Commun. 258, 114-134 (2006).
  28. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, "Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber," Opt. Lett. 26, 1233-1235 (2001).
  29. G. P. Agrawal, Lightwave Technology—Telecommunication Systems (Wiley, 2005).
  30. M. L. Lyra, A. S. Gouveia-Neto, "Saturation effects on modulational instability in non-Kerr-like monomode optical fibers," Opt. Commun. 108, 117-120 (1994).
  31. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, D. J. Richardson, "2R-regenerative all-optical switch based on a highly nonlinear holey fiber," Opt. Lett. 26, 1233-1235 (2001).
  32. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Exp. 11, 843-852 (2003).
  33. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000).
  34. A. Kumar, A. K. Sarma, "Femto-second soliton switching in a three-core coupler," Jpn. J. Appl. Phys. 44, 8498 (2005).
  35. K. S. Chiang, "Bandwidths of optical fibre directional couplers," J. Opt. Soc. Amer. B 14, 1437-1443 (1997).
  36. K. S. Chiang, "Intermodal dispersion in two-core optical fibers," Opt. Lett. 20, 997-999 (1995).
  37. R. Ramaswami, "Optical fiber communication: From transmission to networking," IEEE Commun. Mag. 40, 138-147 (2002).
  38. N. González-Baquedano, N. Arzate, I. Torres-Gómez, A. Ferrando, D. E. Ceballos-Herrera, C. Milián, "Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section," Photon. Nanostruc 10, 594-601 (2012).
  39. A. H. Gnauck, G. Raybon, P. G. Bernasconi, J. Leuthold, C. R. Doerr, L. W. Stulz, "1-Tb/s (6 × 170.6 Gb/s) transmission over 2000-km NZDF using OTDM and RZ-DPSK format," IEEE Photon. Technol. Lett. 15, 1618-1620 (2003).
  40. T. Houbavlis, K. E. Zoiros, M. Kalyvas, G. Theophilopoulos, C. Bintjas, K. Yiannopoulos, N. Pleros, K. Vlachos, H. Avramopoulos, L. Schares, L. Occhi, G. Guekos, J. R. Taylor, S. Hansmann, W. J. Miller, "All-optical signal processing and applications within the esprit project DO_ALL," J. Lightw. Technol. 23, 781-801 (2005).
  41. C. Schubert, Interferometric Gates for All-optical Signal Processing Ph.D. dissertation Technical University of BerlinGermany (2004).
  42. H. Hatami-Hanza, P. L. Chu, "Logic operations in dispersion-mismatched nonlinear fibre couplers," Opt. Commun. 124, 90-94 (1996).
  43. M. G. da Silva, A. M. Bastos, C. S. Sobrinho, E. F. de Almeida, A. S. B. Sombra, "Analytical and numerical studies of the performance of a periodically modulated nonlinear dispersion directional fiber coupler," Opt. Fiber Technol. 12, 148-161 (2006).
  44. A. C. Ferreira, C. S. Sobrinho, J. W. M. Menezes, W. B. Fraga, H. H. B. Rocha, A. W. Lima, JrK. D. A. Sabóia, G. F. Guimarães, J. M. S. Filho, A. S. B. Sombra, "A performance study of an all-optical logic gate based in PAM-ASK," J. Mod. Opt. 56, 1004-1013 (2009).
  45. D. Y. Zang, S. R. Forest, "Crystalline organic semiconductor optical directional couplers and switches using an index-matching layer," IEEE Photon. Technol. Lett. 4, 365-368 (1992).
  46. R. Ramaswami, K. N. Sivarajan, Optical Networks—A Practical Perspective (Academic Press, 2002).
  47. A. Hasegawa, Y. Kodama, Soliton in Optical Communications (Oxford Press, 1995).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited