OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 5 — Mar. 1, 2013
  • pp: 768–778

A High-Accuracy Multidomain Legendre Pseudospectral Frequency-Domain Method With Penalty Scheme for Solving Scattering and Coupling Problems of Nano-Cylinders

Chih-Yu Wang, Shih-Yung Chung, Chun-Hao Teng, Juen-Kai Wang, Chung-Ping Chen, and Hung-chun Chang

Journal of Lightwave Technology, Vol. 31, Issue 5, pp. 768-778 (2013)

View Full Text Article

Acrobat PDF (2125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A new multidomain pseudospectral frequency-domain (PSFD) method based on the Legendre polynomials with penalty scheme is developed for numerically modeling electromagnetic wave scattering problems. The primary aim of the proposed method is to more accurately analyzing scattering and coupling problems in plasmonics, in which optical waves interact with nanometer-sized metallic structures. Using light scattering by a silver circular cylinder as a first example, the formulated method is demonstrated to achieve numerical accuracy in near-field calculations on the order of 10-9 with respect to a unity field strength of the incident wave with excellent exponentially convergent behavior in numerical accuracy. Then, scattering by a dielectric square cylinder and that by several coupled metallic structures involving circular cylinders, square cylinders, or dielectric coated cylinders are examined to provide high-accuracy coupled near-field results.

© 2012 IEEE

Chih-Yu Wang, Shih-Yung Chung, Chun-Hao Teng, Juen-Kai Wang, Chung-Ping Chen, and Hung-chun Chang, "A High-Accuracy Multidomain Legendre Pseudospectral Frequency-Domain Method With Penalty Scheme for Solving Scattering and Coupling Problems of Nano-Cylinders," J. Lightwave Technol. 31, 768-778 (2013)

Sort:  Year  |  Journal  |  Reset


  1. S. A. Maier, H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, (2005) Art. ID 011101.
  2. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
  3. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
  4. S. A. Maier, P. G. Kik, H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003).
  5. J. P. Kottmann, O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096-1098 (2001).
  6. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  7. R. L. Chern, X. X. Liu, C. C. Chang, "Particle plasmons of metal nanospheres: Application of multiple scattering approach," Phys. Rev. E 76, (2007) Art. ID 016609.
  8. R. Gomez-Medina, M. Laroche, J. J. Saenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Opt. Exp. 14, 3730-3737 (2006).
  9. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  10. M. Y. Ng, W. C. Liu, "Local-field confinement in three-pair arrays of metallic nanocylinders," Opt. Exp. 14, 4504-4513 (2006).
  11. J. P. Kottmann, O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Exp. 8, 655-663 (2001).
  12. M. W. Chen, Y. F. Chau, D. P. Tsai, "Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres," Plasmonics 3, 157-164 (2008).
  13. R. Rodriguez-Oliveros, J. A. Sanchez-Gil, "Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces," Opt. Exp. 19, 12208-12219 (2011).
  14. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, (2001) Art. ID 235402.
  15. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
  16. B. Yang, D. Gottlieb, J. S. Hesthaven, "Spectral simulations of electromagnetic wave scattering," J. Comput. Phys. 134, 216-230 (1997).
  17. B. Yang, J. S. Hesthaven, "A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution," IEEE Trans. Antennas Propagat. 47, 132-141 (1999).
  18. J. S. Hesthaven, P. G. Dinesen, J. P. Lynov, "Spectral collocation time-domain modeling of diffractive optical elements," J. Comput. Phys. 155, 287-306 (1999).
  19. G. Zhao, Q. H. Liu, "The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media," IEEE Trans. Antennas Propagat. 52, 742-749 (2004).
  20. Q. H. Liu, "A pseudospectral frequency-domain (PSFD) method for computational electromagnetics," IEEE Antennas Wireless Propagat. Lett. 1, 131-134 (2002).
  21. P. J. Chiang, C. P. Yu, H. C. Chang, "Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method," Phys. Rev. E 75, (2007) Art. ID 026703.
  22. P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, H. C. Chang, "Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations," IEEE J. Quantum Electron. 44, 56-66 (2008).
  23. C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, K. A. Feng, "A Legendre pseudospectral penalty scheme for solving time-domain Maxwell's equations," J. Sci. Comput. 36, 351-390 (2008).
  24. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
  25. S. Abarbanel, D. Gottlieb, "A mathematical analysis of the PML method," J. Comput. Phys. 134, 357-363 (1997).
  26. S. Abarbanel, D. Gottlieb, "On the construction and analysis of absorbing layers in CEM," Appl. Numer. Math. 27, 331-340 (1998).
  27. L. Rayleigh, "The dispersal of light by a dielectric cylinder," Philos. Mag. 36, 365-376 (1918).
  28. J. R. Wait, "Scattering of plane wave from a circular dielectric cylinder at oblique incidence," Can. J. Phys. 33, 189-195 (1955).
  29. W. J. Gordon, C. A. Hall, "Transfinite element methods: Blending function interpolation over arbitrary curved element domains," Numer. Math. 21, 109-129 (1973).
  30. S. Dey, R. Mittra, "A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microw. Guided Wave Lett. 7, 273-275 (1997).
  31. Y. Liu, C. D. Sarris, G. V. Eleftheriades, "Triangular-mesh-based FDTD analysis of two-dimensional plasmonic structures supporting backward waves at optical frequencies," J. Lightw. Technol. 25, 938-946 (2007).
  32. Y. Zhao, Y. Hao, "Finite-difference time-domain study of guided modes in nano-plasmonic waveguides," IEEE Trans. Antennas Propagat. 55, 3070-3077 (2007).
  33. W. J. Gordon, C. A. Hall, "Transfinite element methods: Blending-function interpolation over arbitrary curved element domains," Numer. Math. 21, 109-129 (1973).
  34. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  36. N. N. Rao, Elements of Engineering Electromagnetics (Prentice-Hall, 2004).
  37. J. B. Andersen, V. V. Solodukhov, "Field behavior near a dielectric wedge," IEEE Trans. Antennas Propagat. 26, 598-602 (1978).
  38. W. S. Don, A. Solomonoff, "Accuracy and speed in computing the Chebyshev collocation derivative," SIAM J. Sci. Comput. 16, 1253-1268 (1995).
  39. J. S. Hesthaven, "A stable penalty method for the compressible Navier-Stokes equations: III. Multidimensional domain decomposition schemes," SIAM J. Sci. Comput. 20, 62-93 (1998).
  40. J. S. Hesthaven, T. Warburton, "Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell's equations," J. Comput. Phys. 181, 186-221 (2002).
  41. D. Funaro, D. Gottlieb, "A new method of imposing boundary-conditions in pseudospectral approximations of hyperbolic-equations," Math. Computation 51, 599-613 (1988).
  42. J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems (Cambridge Univ., 2007).
  43. D. Gottlieb, M. Gunzburger, E. Turkel, "On numerical boundary treatment of hyperbolic systems for finite difference and finite element methods," SIAM J. Numer. Anal. 19, 671-681 (1982).
  44. T. Apel, S. Nicaise, "The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges," Math. Methods Appl. Sci. 21, 519-549 (1998).
  45. T. Apel, A.-M. Sandig, J. R. Whiteman, "Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains," Math. Methods Appl. Sci. 19, 63-85 (1996).
  46. K. Schmidt, P. Kauf, "Computation of the band structure of two-dimensional photonic crystals with HP finite elements," Comput. Methods Appl. Mech. Eng. 198, 1249-1259 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited