OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 5 — Mar. 1, 2013
  • pp: 786–792

Analysis of Mode Coupling and Threshold Gain Control for Nanocircular Resonators Confined by Isolation and Metallic Layers

Qi-Feng Yao, Yong-Zhen Huang, Ling-Xiu Zou, Xiao-Meng Lv, Jian-Dong Lin, and Yue-De Yang

Journal of Lightwave Technology, Vol. 31, Issue 5, pp. 786-792 (2013)


View Full Text Article

Acrobat PDF (1633 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Mode coupling and the control of mode Q factor and threshold gain are analyzed for nanocircular resonators confined by isolation and metallic layers based on solving eigenvalue equation for multiple-layer structure circular resonators. For nanocircular resonators only confined by a metallic layer, the metallic layer can enhance the mode confinement for transverse magnetic (TM) whispering-gallery modes (WGMs) and result in high Q TM WGMs. But transverse electric (TE) WGMs can form hybrid modes of surface plasmon polaritons and dielectric modes, with the mode Q factors limited by the metallic layer absorption. By introducing a low index isolation layer between the resonator and the metallic layer, we can greatly enhance the mode Q factors for TE WGMs. However, the mode coupling between different radial modes and the variation of the optical confinement factor in the active layer can result in the oscillation of the mode Q factor and threshold gain versus the isolation layer thickness. The optimization of the isolation layer thickness is important to enhance the mode Q factor and the optical confinement factor for realizing low threshold gain.

© 2012 IEEE

Citation
Qi-Feng Yao, Yong-Zhen Huang, Ling-Xiu Zou, Xiao-Meng Lv, Jian-Dong Lin, and Yue-De Yang, "Analysis of Mode Coupling and Threshold Gain Control for Nanocircular Resonators Confined by Isolation and Metallic Layers," J. Lightwave Technol. 31, 786-792 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-5-786


Sort:  Year  |  Journal  |  Reset

References

  1. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, M. K. Smit, "Lasing in metallic-coated nanocavities," Nature Photon. 1, 589-594 (2007).
  2. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. C. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Exp. 17, 11107-11112 (2009).
  3. C. Z. Ning, "Semiconductor nanolasers," Phys. Status Solidi B 247, 774-788 (2010).
  4. S. L. Chuang, D. Bimberg, "Metal-cavity nanolasers," IEEE Photon. J. 3, 288-292 (2011).
  5. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, C. Z. Ning, "Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection," Phys. Rev. B 85, (2012) Art. ID 041301(R).
  6. V. Krishnamurthy, B. Klein, "Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers," IEEE J. Quantum Electron 40, 67-73 (2008).
  7. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, Y. Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett 33, 1261-1263 (2008).
  8. Y. D. Yang, Y. Z. Huang, S. J. Wang, "Mode analysis for equilateral-triangle-resonator microlasers with metal confinement layers," IEEE J. Quantum Electron. 45, 1529-1536 (2009).
  9. K. J. Che, Y. D. Yang, Y. Z. Huang, "Mode characteristics for square resonators with a metal confinement layer," IEEE J. Quantum Electron. 46, 414-420 (2010).
  10. M. Hentschel, K. Richter, "Quantum chaos in optical systems: The annular billiard," Phys. Rev. E. 66, (2002) Art. ID 056207.
  11. A. Vial, A. S. Grimault, D. Macias, D. Barchiesi, M. L. de la Chapelle, "Application to the modeling of improved analytical fit of gold dispersion: Extinction spectra with a finite-difference time-domain method," Phys. Rev. B. 71, 085416-085422 (2005).
  12. Y. D. Yang, Y. Z. Huang, W. H. Guo, Q. Y. Lu, J. F. Donegan, "Enhancement of quality factor for TE whispering-gallery modes in microcylinder resonators," Opt. Exp. 18, 13057-13062 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited