OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 5 — Mar. 1, 2013
  • pp: 793–801

Numerical Methods for Calculating Poles of the Scattering Matrix With Applications in Grating Theory

Dmitry A. Bykov and Leonid L. Doskolovich

Journal of Lightwave Technology, Vol. 31, Issue 5, pp. 793-801 (2013)


View Full Text Article

Acrobat PDF (1293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Waveguide and resonant properties of diffractive structures are often explained through the complex poles of their scattering matrices. Numerical methods for calculating poles of the scattering matrix with applications in grating theory are discussed and analyzed. A new iterative method for computing the scattering matrix poles is proposed. The method takes account of the scattering matrix form in the pole vicinity and relies upon solving matrix equations with use of matrix decompositions. Using the same mathematical approach, we also describe a Cauchy-integral-based method that allows all of the poles in a specified domain to be calculated. Calculation of the modes of a metal-dielectric diffraction grating shows that the iterative method proposed has the high rate of convergence and is numerically stable for large-dimension scattering matrices. An important advantage of the proposed method is that it usually converges to the nearest pole.

© 2012 IEEE

Citation
Dmitry A. Bykov and Leonid L. Doskolovich, "Numerical Methods for Calculating Poles of the Scattering Matrix With Applications in Grating Theory," J. Lightwave Technol. 31, 793-801 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-5-793


Sort:  Year  |  Journal  |  Reset

References

  1. V. Lomakin, E. Michielssen, "Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes," IEEE Trans. Antennas Propag. 54, 970-984 (2006).
  2. E. Anemogiannis, E. Glytsis, T. Gaylord, "Efficient solution of eigenvalue equations of optical waveguiding structures," J. Lightw. Technol. 12, 2080-2084 (1994).
  3. C. Chen, P. Berini, D. Feng, S. Tanev, V. Tzolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media," Opt. Exp. 7, 260-272 (2000).
  4. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Phys. Rev. B 66, 045102 (2002).
  5. M. Nevière, E. Popov, R. Reinisch, "Electromagnetic resonances in linear and nonlinear optics: Phenomenological study of grating behavior through the poles and zeros of the scattering operator," J. Opt. Soc. Amer. A 12, 513-523 (1995).
  6. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College, 2005).
  7. N. A. Gippius, S. G. Tikhodeev, "The scattering matrix and optical properties of metamaterials," Phys. Usp. 52, 1027-1030 (2009).
  8. N. A. Gippius, T. Weiss, S. G. Tikhodeev, H. Giessen, "Resonant mode coupling of optical resonances in stacked nanostructures," Opt. Exp. 18, 7569-7574 (2010).
  9. D. A. Bykov, L. L. Doskolovich, "Magneto-optical resonances in periodic dielectric structures magnetized in plane," J. Mod. Opt. 57, 1611-1618 (2010).
  10. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
  11. W. Suh, S. Fan, "Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics," Opt. Lett. 28, 1763-1765 (2003).
  12. E. Centeno, D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62, R7683-R7686 (2000).
  13. E. Centeno, D. Felbacq, "Rabi oscillations in bidimensional photonic crystals," Phys. Rev. B 62, 10 101-10 108 (2000).
  14. T. Vallius, J. Tervo, P. Vahimaa, J. Turunen, "Electromagnetic field computation in semiconductor laser resonators," J. Opt. Soc. Amer. A 23, 906-911 (2006).
  15. M. Liscidini, D. Gerace, L. C. Andreani, J. E. Sipe, "Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media," Phys. Rev. B 77, (2008) Art. ID 035324.
  16. D. Felbacq, "Numerical computation of resonance poles in scattering theory," Phys. Rev. E 64, (2001) Art. ID 047702.
  17. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, H. Giessen, "Derivation of plasmonic resonances in the Fourier modal method with adaptive spatial resolution and matched coordinates," J. Opt. Soc. Amer. A 28, 238-244 (2011).
  18. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Amer. A 12, 1068-1076 (1995).
  19. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Amer. A 13, 1870-1876 (1996).
  20. L. Li, "Field singularities at lossless metal-dielectric arbitrary-angle edges and their ramifications to the numerical modeling of gratings," J. Opt. Soc. Amer. A 29, 593-604 (2012).
  21. T. Weiss, Advanced numerical and semi-analytical scattering matrix calculations for modern nano-optics Ph.D. dissertation Fakult ä t Mathematik und Physik Physikalisches Institut der UniversitätStuttgartGermany (2011).
  22. D. Felbacq, "Finding resonance poles by means of cauchy integrals," Proc. 13th Int. Conf. Transparent Optical Networks (2011).
  23. A. Akimov, N. Gippius, S. Tikhodeev, "Optical Fano resonances in photonic crystal slabs near diffraction threshold anomalies," JETP Lett. 93, 427-430 (2011).
  24. F. R. Gantmacher, The Theory of Matrices (Nauka, 1988).
  25. A. S. Householder, The Numerical Treatment of a Single Nonlinear Equation (McGraw-Hill, 1970).
  26. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Amer. A 13, 1024-1035 (1996).
  27. A. D. Rakic, A. B. Djurišic, J. M. Elazar, M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
  28. L. Yau, A. Ben-Israel, "The Newton and Halley methods for complex roots," Am. Math. Mon. 105, 806-818 (1998).
  29. Y. Hua, T. K. Sarkar, "Matrix pencil and system poles," Signal Process. 21, 195-198 (1990).
  30. Y. Hua, T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Trans. Acoust., Speech, Signal Process. 38, 814-824 (1990).
  31. Y. Hua, T. K. Sarkar, "On SVD for estimating generalized eigenvalues of singular matrix pencil in noise," IEEE Trans. Signal Process. 39, 892-900 (1991).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited