OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 5 — Mar. 1, 2013
  • pp: 809–814

Second-Order PMD-Induced Crosstalk Between Polarization-Multiplexed Signals and Its Impact on Ultrashort Optical Pulse Transmission

Toshihiko Hirooka, Koudai Harako, Pengyu Guan, and Masataka Nakazawa

Journal of Lightwave Technology, Vol. 31, Issue 5, pp. 809-814 (2013)


View Full Text Article

Acrobat PDF (1493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present an analytical description and experimental demonstration of inter-polarization crosstalk caused by second-order polarization-mode dispersion (PMD). Even if the first-order PMD is completely compensated for, second-order PMD leads to large transmission impairments in ultrashort optical pulse transmissions through signal depolarization, which is caused by the frequency dependence of the principal state of polarization. In particular, depolarization in a polarization-multiplexed transmission inevitably prevents the complete separation of the two channels at the polarization demultiplexing. The analytical results show that the crosstalk increases in proportion to the fourth power of the signal bandwidth and grows by the square of distance as also verified by the experiments.

© 2012 IEEE

Citation
Toshihiko Hirooka, Koudai Harako, Pengyu Guan, and Masataka Nakazawa, "Second-Order PMD-Induced Crosstalk Between Polarization-Multiplexed Signals and Its Impact on Ultrashort Optical Pulse Transmission," J. Lightwave Technol. 31, 809-814 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-5-809


Sort:  Year  |  Journal  |  Reset

References

  1. Ultrahigh-Speed Optical Transmission Technology (Springer, 2007).
  2. M. Nakazawa, T. Yamamoto, K. R. Tamura, "1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electron. Lett. 36, 2027-2029 (2000).
  3. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, C. Schubert, "Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission," Electron. Lett. 42, 178-179 (2006).
  4. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, P. Jeppesen, "Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel," Opt. Exp. 18, 1438-1443 (2010).
  5. T. Richter, E. Palushani, C. Schmidt-Langhorst, M. Nölle, R. Ludwig, J. K. Fischer, C. Schubert, "Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection," Proc. OFC (2011).
  6. E. Ip, J. M. Kahn, "Digital equalization of chromatic dispersion and polarization mode dispersion," J. Lightw. Technol. 25, 2033-2043 (2007).
  7. J. P. Turkiewicz, E. Tangdiongga, G. Lehmann, H. Rohde, W. Schairer, Y. R. Zhou, E. S. R. Sikora, A. Lord, D. B. Payne, G. D. Khoe, H. de Waardt, "160 Gb/s OTDM networking using deployed fiber," J. Lightw. Technol. 23, 225-235 (2005).
  8. Y. Tomiyama, K. Harako, P. Guan, T. Hirooka, M. Nakazawa, "Comparison between polarization-multiplexed DPSK and single-polarization and DQPSK in 640 Gbaud, 1.28 Tbit/s-500 km single-channel transmission," Opt. Fiber Technol. 17, 439-444 (2011).
  9. P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, M. Nakazawa, "2.56 Tbit/s/ch polarization-multiplexed DQPSK transmission over 300 km using time-domain optical Fourier transformation," Opt. Exp. 19, B567-B573 (2011).
  10. T. Hirooka, K. Harako, P. Guan, M. Nakazawa, "Bandwidth and distance dependences of depolarization-induced crosstalk in polarization-multiplexed transmission," Proc. OFC (2012).
  11. C. D. Poole, Optical Fiber Telecommunications III A (Academic, 1997).
  12. H. Kogelnik, L. E. Nelson, R. M. Jopson, Optical Fiber Telecommunications IV B (Academic, 2002).
  13. F. Bruyère, "Impact of first and second order PMD in optical digital transmission systems," Opt. Fiber Technol. 2, 269-280 (1996).
  14. P. Ciprut, B. Gisin, N. Gisin, R. Passy, J. P. Von der Weid, F. Prieto, C. W. Zimmer, "Second-order polarization mode dispersion: Impact on analog and digital transmissions," J. Lightw. Technol. 16, 757-771 (1998).
  15. H. Kogelnik, L. E. Nelson, J. P. Gordon, "Emulation and inversion of polarization-mode dispersion," J. Lightw. Technol. 21, 482-495 (2003).
  16. M. Shtaif, M. Boroditsky, "The effect of the frequency dependence of PMD on the performance of optical communications systems," IEEE Photon. Technol. Lett. 15, 1369-1371 (2003).
  17. H. Kogelnik, L. E. Nelson, P. J. Winzer, "Second-order PMD outage of first-order compensated fiber systems," IEEE Photon. Technol. Lett. 16, 1053-1055 (2004).
  18. L. E. Nelson, T. N. Nielsen, H. Kogelnik, "Observation of PMD-induced coherent crosstalk in polarization-multiplexed transmission," IEEE Photon. Technol. Lett. 13, 738-740 (2001).
  19. J. P. Gordon, H. Kogelnik, "PMD fundamentals," Proc. Nat. Acad. Sci. 97, 4541-4550 (2000).
  20. M. Yoshida, T. Yaguchi, S. Harada, M. Nakazawa, "A 40 GHz regeneratively and harmonically mode-locked erbium-doped fiber laser and its longitudinal-mode characteristics," IEICE Trans. Electron. E87-C, 1166-1172 (2004).
  21. B. L. Heffner, "Accurate, automated measurement of differential group delay dispersion and principal state variation using Jones matrix eigenanalysis," IEEE Photon. Technol. Lett. 5, 814-817 (1993).
  22. L. E. Nelson, R. M. Jopson, H. Kogelnik, G. J. Foschini, "Measurement of depolarization and scaling associated with second-order polarization mode dispersion in optical fibers," IEEE Photon. Technol. Lett. 11, 1614-1616 (1999).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited