OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 5 — Mar. 1, 2013
  • pp: 830–835

Single-Mode, Large Mode Area, Solid-Core Photonic BandGap Fiber With Hetero-Structured Cladding

Assaad Baz, Laurent Bigot, Géraud Bouwmans, and Yves Quiquempois

Journal of Lightwave Technology, Vol. 31, Issue 5, pp. 830-835 (2013)

View Full Text Article

Acrobat PDF (739 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We theoretically and experimentally analyze the benefit of hetero-structured cladding in Solid-Core Photonic BandGap fibers so as to increase the loss ratio between high order modes and fundamental mode. This property is applied to the realization of 19-cells core fibers practically single-mode around 1050 nm. When designed to operate in the 4th BandGap, a new design is proposed which permits to obtain mode field diameter of 44 μm whereas, for operation in the 3rd BandGap, a mode field diameter of 33 μm is obtained with 20 cm bending radius. The impact of the shape of hetero-structure on single-mode behavior is discussed.

© 2012 IEEE

Assaad Baz, Laurent Bigot, Géraud Bouwmans, and Yves Quiquempois, "Single-Mode, Large Mode Area, Solid-Core Photonic BandGap Fiber With Hetero-Structured Cladding," J. Lightwave Technol. 31, 830-835 (2013)

Sort:  Year  |  Journal  |  Reset


  1. J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Exp. 14, 69-81 (2006).
  2. L. Dong, J. Li, X. Peng, "Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 μm2," Opt. Exp. 14, 11 512-11 519 (2006).
  3. A. Galvanauskas, M. C. Swan, C.-H. Liu, "Effectively single-mode large core passive and active fibers with chirally coupled-core structures," Proc. Conf. Lasers Electro-Optics/Quantum Electron. Laser Sci. Conf. Photonic Applicat. Syst. Technol. (2008).
  4. S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, S. Février, "Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range," Opt. Lett. 36, 3566-3568 (2011).
  5. T. A. Birks, J. C. Knight, P. S. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  6. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hadrich, H. Carstens, C. Jauregui, J. Limpert, A. Tunnermann, "Fiber chirped-pulse amplification system emitting 3.8 GW peak power," Opt. Exp. 19, 255-260 (2011).
  7. J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, "Photonic band gap guidance in optical fibers," Sci. 282, 1476-1478 (1998).
  8. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002).
  9. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20dB/km) around 1550 nm," Opt. Exp. 13, 8452 (2005).
  10. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061 113-061 113–3 (2008).
  11. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, Y. Quiquempois, "Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers," Opt. Lett. 34, 3083-3085 (2009).
  12. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, J. Broeng, "High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm," Opt. Exp. 17, 447 (2009).
  13. H. Liu, A. Wang, L. Jiang, L. Bigot, G. Bouwmans, Z. Zhang, "Sub-30-fs pulse generation from dispersion-managed Yb:Fiber ring laser incorporating solid-core photonic bandgap fiber," IEEE Photon. Technol. Lett. 24, 500-502 (2012).
  14. O. N. Egorova, D. A. Gaponov, N. A. Harchenko, A. F. Kosolapov, S. A. Letunov, A. D. Pryamikov, S. L. Semjonov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, A. N. Guryanov, D. V. Kuksenkov, "All-solid photonic bandgap fiber with large mode area and high order modes suppression," Proc. Conf. Lasers Electro-Optics/Quantum Electron. Laser Sci. Conf. Photon. Applicat. Syst. Technol. (2008).
  15. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, M. Fujimaki, "Low bending loss and effectively single-mode all-solid photonic bandgap fiber with an effective area of 650 μm2," Opt. Lett. 37, 1292-1294 (2012).
  16. T. Murao, K. Saitoh, T. Taru, T. Nagashima, K. Maeda, T. Sasaki, M. Koshiba, "Bend-insensitive and effectively single-moded all-solid photonic bandgap fibers with heterostructured cladding," Proc. Opt. Commun., 2009. ECOC '09. 35th Eur. Conf. (2009) pp. 1-2.
  17. K. Saitoh, N. J. Florous, T. Murao, M. Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Exp. 14, 7342-7352 (2006).
  18. K. Otsuka, "Self-induced phase turbulence and chaotic itinerancy in coupled laser systems," Phys. Rev. Lett. 65, 329-332 (1990).
  19. V. Pureur, J. C. Knight, B. T. Kuhlmey, "Higher order guided mode propagation in solid-core photonic bandgap fibers," Opt. Exp. 18, 8906 (2010).
  20. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, M. Douay, "Improvements of solid-core photonic bandgap fibers by means of interstitial air holes," Opt. Lett. 32, 1719-1721 (2007).
  21. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Exp. 14, 5688-5698 (2006).
  22. A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm," Opt. Exp. 15, 316-324 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited