OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 7 — Apr. 1, 2013
  • pp: 1015–1022

Experimental Assessment of the Accuracy of an Advanced Photonic-Bandgap-Fiber Model

Kiarash Zamani Aghaie, Michel J. F. Digonnet, and Shanhui Fan

Journal of Lightwave Technology, Vol. 31, Issue 7, pp. 1015-1022 (2013)


View Full Text Article

Acrobat PDF (1084 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

From scanning-electron microscope images of the cross section of a photonic-bandgap fiber (NKT Photonics' HC-1550-02) we developed a realistic model for its permittivity profile that includes all observable structural deformations in the core and in the first two rows of cladding holes. Using this more accurate index profile in our C++ full-vectorial finite-difference mode solver, we numerically studied this fiber's modal dispersion, along with the intensity profile, group index spectrum, and group-velocity dispersion spectrum of its fundamental mode. Comparisons between these predictions and their experimental counterparts measured in the fiber show good quantitative agreement for all these characteristics. On the other hand, when these structural deformations are purposely not included in the permittivity profile, the predicted and measured characteristics generally poorly match. The study demonstrates that first, accurate siμltaneous predictions of several key modal characteristics of hollow-core fibers can be obtained numerically, and that although small, the aforementioned index-profile perturbations μst be included in order to obtain sufficient accuracy.

© 2013 IEEE

Citation
Kiarash Zamani Aghaie, Michel J. F. Digonnet, and Shanhui Fan, "Experimental Assessment of the Accuracy of an Advanced Photonic-Bandgap-Fiber Model," J. Lightwave Technol. 31, 1015-1022 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-7-1015


Sort:  Year  |  Journal  |  Reset

References

  1. F. Benabid, "Hollow-core photonic bandgap fibre: New light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
  2. S. Blin, H. K. Kim, M. J. F. Digonnet, G. S. Kino, "Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber," J. Lightw. Technol. 25, 861-865 (2007).
  3. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensesn, T. Hansesn, H. Simonsesn, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).
  4. T. J. Stephens, R. R. Maier, J. S. Barton, J. D. C. Jones, "Fused silica hollow-core photonic crystal fibre for mid-infrared transmission," Conference on Lasers and Electro-Optics (CLEO), Postconference Digest San FranciscoCAUSA (2004) Paper CPDD4.
  5. M. Koshiba, K. Saitoh, "Numerical verification of degeneracy in hexagonal photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 1313-1315 (2001).
  6. V. Dangui, M. J. F. Digonnet, G. S. Kino, "A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers," Opt. Exp. 14, 2979-2993 (2006).
  7. Z. Zhu, T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Exp. 10, 853-864 (2002).
  8. W. Zhi, R. Guobin, L. Shuqin, J. Shuishen, "Supercell lattice method for photonic crystal fibers," Opt. Exp. 11, 980-991 (2003).
  9. M. Koshiba, K. Saitoh, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers," J. Quantum Electron. 38, 927-933 (2002).
  10. T. P. White, R. McPhedran, L. Botten, G. Smith, C. M. de Sterke, "Calculations of air-guided modes in photonic crystal fibers using the μltipole method," Opt. Exp. 9, 721-732 (2001).
  11. F. Poletti, N. G. R. Broderick, D. J. Richardson, T. M. Monro, "The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Exp. 13, 9115-9124 (2005).
  12. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Exp. 14, 7974-7985 (2006).
  13. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
  14. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Exp. 12, 1485-1496 (2004).
  15. M. J. Li, J. A. West, K. W. Koch, "Modeling effects of structural distortions on air-core photonic bandgap fibers," J. Lightw. Technol. 25, 2463-2468 (2007).
  16. M. N. Petrovich, F. Poletti, A. van Brakel, D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Exp. 16, 4337-4346 (2008).
  17. K. Saitoh, N. A. Mortensen, M. Koshiba, "Air-core photonic band-gap fibers: The impact of surface modes," Opt. Exp. 12, 394-400 (2004).
  18. T. A. Birks, G. J. Pearce, D. M. Bird, "Approximate band structure calculation for photonic bandgap fibers," Opt. Exp. 14, 9483-9490 (2006).
  19. K. Zamani Aghaie, S. Fan, M. J. F. Digonnet, "Birefringence analysis of photonic-bandgap fibers using the hexagonal Yee's cell," IEEE J. Quantum Electron. 46, 920-930 (2010).
  20. K. Zamani Aghaie, M. J. F. Digonnet, S. Fan, "Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers," Opt. Lett. 35, 1938-1940 (2010).
  21. NKT Photonics' HC-1550-02 Datasheet http://www.nktphotonics.com/files/files/HC-1550-02.pdf.
  22. F. Couny, H. Sabert, P. J. Roberts, D. P. Williams, A. Tomlinson, B. J. Mangan, L. Farr, J. C. Knight, T. A. Birks, P. St. J. Russell, "Visualizing the photonic band gap in hollow core photonic crystal fibers," Opt. Exp. 13, 558-563 (2005).
  23. R. P. Feynman, "Forces in molecules," Phys. Rev. 56, 340-343 (1939).
  24. H. Wen, M. Terrel, S. Fan, M. J. F. Digonnet, "Sensing with slow light in fiber Bragg gratings," IEEE Sensors J. 12, 156-163 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited