OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 7 — Apr. 1, 2013
  • pp: 1045–1054

An Ultra Compact and High Speed Magneto-Optic Surface Plasmon Switch

Mehdi Khatir and Nosrat Granpayeh

Journal of Lightwave Technology, Vol. 31, Issue 7, pp. 1045-1054 (2013)


View Full Text Article

Acrobat PDF (2866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we have proposed an ultra compact, wide band, and high speed current-controlled magneto-optic (MO) switch based on the optical excitation of surface plasmon polaritons (SPPs) in a magneto-optic metal-insulator-metal (MO-MIM) waveguide. The SPPs are excited on thin metal films in a Kretschmann configuration. For description of device operation, we have derived the dispersion relation with considering MO effects for the mid layer in the five layer surface plasmon polariton (SPP) slab waveguides in a longitudinal configuration which the applied magnetic field is parallel to the layers' interfaces and the longitudinal wave propagation direction. Due to the coupling between SPP modes, there exist all components of the electromagnetic field, hence we do not have purely TM modes in this configuration. For evaluation of the excitation condition, we have used the Rourad's method to calculate the total reflection coefficient due to all layers beyond the interface of the prism and gold where the incident light is launched to the device. The optical response and operation of the device are discussed in terms of dimensions and wavelength. The device operation is based on the variations of the magnetic bias condition by altering the magnetization within the YIG layer. Switching between ON and OFF states is achieved by altering the amplitude of the control current from zero to an appropriate value which the amplitude of the magnetic field bias, changes proportional to the current value. The presented algorithm for analysis of the proposed switch is useful for the design and analysis of any magneto-optic surface plasmon device.

© 2013 IEEE

Citation
Mehdi Khatir and Nosrat Granpayeh, "An Ultra Compact and High Speed Magneto-Optic Surface Plasmon Switch," J. Lightwave Technol. 31, 1045-1054 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-7-1045


Sort:  Year  |  Journal  |  Reset

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, H. A. Atwater, "Plasmonics: A route to nanoscale optical devices," Adv. Mater. 13, 1501-1505 (2001).
  3. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
  4. J. H. Park, H. Takagi, J. K. Cho, K. Nishiμra, H. Uchida, M. Inoue, "Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy," IEEE Trans. Magn. 40, 3045-3047 (2004).
  5. K. J. Chau, S. E. Irvine, A. Y. Elezzabi, "A gigahertz surface magneto-plasmon optical modulator," IEEE J. Quantum Electron. 40, 571-579 (2004).
  6. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schroteler, M. Wallenhorst, H. Dötsch, "Improved design of magnetooptic rib waveguides for optical isolators," J. Lightw. Technol. 16, 818-823 (1998).
  7. M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, H. Dötsch, P. Hertel, "Unidirectional magnetooptic polarization converters," J. Lightw. Technol. 17, 2605-2611 (1999).
  8. Y. Shoji, I. W. Hsieh, R. M. Osgood, T. Mizumoto, "Polarization-independent magneto-optical waveguide isolator using TM-mode nonreciprocal phase shift," J. Lightw. Technol. 25, 3108-3113 (2007).
  9. M. Vanwolleghem, P. Gogol, P. Beauvillain, W. Van Parys, R. L. Baets, "Design and optimization of a monolithically integratable InP-based optical waveguide isolator," J. Opt. Soc. Am. B 24, 1-12 (2007).
  10. Z. Haifeng, J. Xiaoqing, Y. Jianyi, Z. Qiang, Y. Tianbao, W. Minghua, T. Yu, "Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled mach-zehnder interferometer," J. Lightw. Technol. 26, 3166-3172 (2008).
  11. J. Montoya, J. Hensley, K. Parameswaran, M. Allen, R. Ram, "Surface plasmon isolator based on nonreciprocal coupling," J. Appl. Phys. 106, 1063 (2009).
  12. M. Khatir, N. Granpayeh, "Design and siμlation of magneto-optic Mach-Zehnder isolator," Optik 122, 2199-2202 (2011).
  13. M. Khatir, N. Granpayeh, "A wide band and high confinement surface plasmon polariton mode converter based on magneto-optic effects," IEEE Trans. Magn. .
  14. R. Bahuguna, M. Mina, T. Jin-Wei, R. J. Weber, "Magneto-optic-based fiber switch for optical comμnications," IEEE Trans. Magn. 42, 3099-3101 (2006).
  15. R. Bahuguna, M. Mina, R. J. Weber, "Mach-zehnder interferometric switch utilizing Faraday rotation," IEEE Trans. Magn. 43, 2680-2682 (2007).
  16. S. Kemmet, M. Mina, R. J. Weber, "Current-controlled, high-speed magneto-optic switching," IEEE Trans. Magn. 46, 1829-1831 (2010).
  17. T. Jin-Wei, M. Mina, R. J. Weber, "All-optical integrated switch utilizing Faraday rotation," IEEE Trans. Magn. 46, 2474-2477 (2010).
  18. S. Sakaguchi, N. Sugimoto, "Transmission properties of μltilayer films composed of magneto-optical and dielectric materials," J. Lightw. Technol. 17, 1087-1092 (1999).
  19. O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, P. Hertel, "Magnetooptical waveguides with polarization-independent nonreciprocal phase shift," J. Lightw. Technol. 19, 214-221 (2001).
  20. S. M. Hamidi, M. M. Tehranchi, "High transmission enhanced faraday rotation in coupled resonator magneto-optical waveguides," J. Lightw. Technol. 28, 2139-2145 (2010).
  21. S. A. Maier, "Plasmonics: The promise of highly integrated optical devices," IEEE J. Quantum Electron. 12, 1671-1677 (2006).
  22. M. Dragoman, D. Dragoman, "Plasmonics: Applications to nanoscale terahertz and optical devices," Prog. Quantum Electron. 32, 1-41 (2008).
  23. B. Pal, Frontiers in Guided Wave Optics and Optoelectronics (InTech., 2010) pp. 321-342.
  24. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  25. P. Lecaruyer, E. Maillart, M. Canva, J. Rolland, "Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance," J. Appl. Opt. 45, 8419-8423 (2006).
  26. B. Sepúlveda, L. M. Lechuga, G. Armelles, "Magnetooptic effects in surface-plasmon-polaritons slab waveguides," J. Lightw. Technol. 24, 945-955 (2006).
  27. Z. Q. Qiu, S. D. Bader, "Surface magneto-optic Kerr effect," Rev. Sci. Instrum. 71, 1243-1255 (2000).
  28. A. Erdmann, P. Hertel, "Beam-propagation in magnetooptic waveguides," IEEE J. Quantum Electron. 31, 1510-1516 (1995).
  29. R. Zia, A. Chandran, M. L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005).
  30. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," J. Appl. Opt. 24, 4493-4499 (1985).
  31. J. Shibayama, R. Takahashi, J. Yamauchi, H. Nakano, "Frequency-dependent locally one-dimensional FDTD implementation with a combined dispersion model for the analysis of surface plasmon waveguides," IEEE Photon Technol. Lett. 20, 824-826 (2008).
  32. B. J. Frey, D. B. Leviton, T. J. Madison, "Temperature-dependent refractive index of silicon and germanium," Proc. SPIE (2006) pp. 62732.
  33. H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, M. Ye, "Applications of magnetic garnet films in integrated optics," IEEE Trans. Magn. 28, 2979-2984 (1992).
  34. D. Dai, Z. Wang, N. Julian, J. E. Bowers, "Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides," Opt. Exp. 18, 27404-27415 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited