OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1374–1382

Analysis of Pulse Replicators for High-Bandwidth, High-Dynamic-Range, Single-Shot Optical Characterization

C. Dorrer

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1374-1382 (2013)

View Full Text Article

Acrobat PDF (1422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Optical pulse replicators generate multiple replicas of an optical waveform that are averaged to increase the signal-to-noise ratio of single-shot, high-bandwidth temporal measurements. Processing a replicated waveform requires that the delayed realizations of the waveform under test be retimed properly before averaging. Delay miscalibration significantly reduces the measurement bandwidth. Processing algorithms based on edge alignment, centroid matching, and minimization of the distance between replicas decrease the impact of the detrimental bandwidth reduction, and a global distance minimization, simultaneously taking into account the distance between all pairs of retimed replicas, has the best performance, even in the presence of significant measurement noise. The general impact of chromatic dispersion on the averaged waveform is derived in the framework of the temporal transport-of-intensity equation, and the measurement error is quantified for various optical signals.

© 2013 USGov

C. Dorrer, "Analysis of Pulse Replicators for High-Bandwidth, High-Dynamic-Range, Single-Shot Optical Characterization," J. Lightwave Technol. 31, 1374-1382 (2013)

Sort:  Year  |  Journal  |  Reset


  1. I. A. Walmsley, C. Dorrer, "Characterization of ultrashort electromagnetic pulses," Adv. Opt. Photon. 1, 308-437 (2009).
  2. Y. Tsuchiya, "Advances in streak camera instrumentation for the study of biological and physical processes," IEEE J. Quantum Electron. 20, 1516-1528 (1984).
  3. W. R. Donaldson, R. Boni, R. L. Keck, P. A. Jaanimagi, "A self-calibrating, multichannel streak camera for inertial confinement fusion applications," Rev. Sci. Instrum. 73, 2606-2615 (2002).
  4. M. J. M. Pelgrom, Analog-to-Digital Conversion (Springer, 2010).
  5. R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Sel. Areas Commun. 17, 539-550 (1999).
  6. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray, R. C. Williamson, "Optically sampled analog-to-digital converters," IEEE Trans. Microw. Theory Tech. 49, 1840-1853 (2001).
  7. J. A. Valdmanis, G. Mourou, "Subpicosecond electrooptic sampling: Principles and applications," IEEE J. Quantum Electron. 22, 69-78 (1986).
  8. S.-G. Park, M. R. Melloch, A. M. Weiner, "Analysis of terahertz waveforms measured by photoconductive and electrooptic sampling," IEEE J. Quantum Electron. 35, 810-819 (1999).
  9. C. Dorrer, "Single-shot measurement of the electric field of optical waveforms by use of time-magnification and heterodyning," Opt. Lett. 31, 540-542 (2006).
  10. W. R. Donaldson, C. Zhao, L. Ji, R. G. Roides, K. Miller, B. Beeman, "A single-shot, multiwavelength electro-optic data-acquisition system for inertial confinement fusion applications," Rev. Sci. Instrum. 83, 10D726 (2012).
  11. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994).
  12. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, "Optical time lens based on four-wave mixing on a silicon chip," Opt. Lett. 33, 1047-1049 (2008).
  13. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, B. M. Van Wonterghem, "National ignition facility laser performance status," Appl. Opt. 46, 3276-3303 (2007).
  14. T. J. B. Collins, J. A. Marozas, K. S. Anderson, R. Betti, R. S. Craxton, J. A. Delettrez, V. N. Goncharov, D. R. Harding, F. J. Marshall, R. L. McCrory, D. D. Meyerhofer, P. W. McKenty, P. B. Radha, A. Shvydky, S. Skupsky, J. D. Zuegel, "A polar-drive–ignition design for the National Ignition Facility," Phys. Plasmas 19, 056308 (2012).
  15. J. R. Marciante, W. R. Donaldson, R. G. Roides, "Averaging of replicated pulses for enhanced-dynamic-range single-shot measurement of nanosecond optical pulses," IEEE Photonics Technol. Lett. 19, 1344-1346 (2007).
  16. W. R. Donaldson, J. R. Marciante, R. G. Roides, "An optical replicator for single-shot measurements at 10 GHz with a dynamic range of 1800:1," IEEE J. Quantum Electron. 46, 191-196 (2010).
  17. K.-L. Deng, R. J. Runser, I. Glesk, P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Photonics Technol. Lett. 10, 397-399 (1998).
  18. A. Jolly, J.-F. Gleyze, P. Di Bin, V. Kermène, "Demonstration of a true single-shot 100 GHz-bandwidth optical oscilloscope at 1053–1064 nm," Opt. Exp. 17, 12,109-12,120 (2009).
  19. M. Komanec, P. Honzátko, S. Zvánovec, "Single-shot all-optical sampling oscilloscope using a polarization-maintaining resonator for pulse replication," Microw. Opt. Technol. Lett. 52, 2452-2456 (2010).
  20. C. Dorrer, J. Bromage, J. D. Zuegel, "High-dynamic-range single-shot cross-correlator based on an optical pulse replicator," Opt. Exp. 16, 13,534-13,544 (2008).
  21. C. Dorrer, "Characterization of nonlinear phase shifts by use of the temporal transport-of-intensity equation," Opt. Lett. 30, 3237-3239 (2005).
  22. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, "Improved laser-beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
  23. J. E. Rothenberg, "Comparison of beam-smoothing methods for direct-drive inertial confinement fusion," J. Opt. Soc. Amer. B 14, 1664-1671 (1997).
  24. S. P. Regan, J. A. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, V. A. Smalyuk, "Experimental investigation of smoothing by spectral dispersion," J. Opt. Soc. Amer. B 17, 1483-1489 (2000).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited