OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1388–1398

Simulation and Analysis of a Sub-Wavelength Grating Based Multilayer Surface Plasmon Resonance Biosensor

Md. Saiful Islam and Abbas Z. Kouzani

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1388-1398 (2013)


View Full Text Article

Acrobat PDF (1438 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents a subwavelength grating based multilayer surface plasmon resonance biosensor (SPRB) which includes a periodic array of subwavelength grating on top of a layer of graphene sheet in the biosensor. The proposed biosensor is named grating-graphene SPRB (GG-SPRB). The aim of the proposed multilayer structure is to improve the sensitivity of the SPRB through monitoring of the biomolecular interactions of DNA hybridization. Significant sensitivity improvement is obtained for the GG-SPRB compared with the conventional SPRB. The result of the numerical investigation of the GG-SPRB is presented and compared with a theoretically developed multilayer matrix formalism, and a good agreement has been observed. In addition, an optimization of the grating dimensions including volume factor, grating depth, grating angle, grating period, and grating geometry (e.g., rectangular, sinusoidal and triangular) is presented. The outcome of the investigation presented in this paper identifies desired functioning conditions corresponding to the best design parameters for the GG-SPRB.

© 2013 IEEE

Citation
Md. Saiful Islam and Abbas Z. Kouzani, "Simulation and Analysis of a Sub-Wavelength Grating Based Multilayer Surface Plasmon Resonance Biosensor," J. Lightwave Technol. 31, 1388-1398 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-9-1388


Sort:  Year  |  Journal  |  Reset

References

  1. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats, "Plasmonic nanorod metamaterials for biosensing," Nat. Mater. 8, 867-871 (2009).
  2. H. S. Jang, K. N. Park, C. D. Kang, J. P. Kim, S. J. Sim, K. S. Lee, "Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen," Opt. Commun. 282, 2827-2830 (2009).
  3. H. F. Schiretz, A. Z. Kouzani, "Modeling and simulation of a periodic grating coupled configuration for surface plasmon excitation," Proc. IEEE/ICME Int. Conf. Complex Medical Engineering (CME) (2011) pp. 53-57.
  4. J. Zhao, X. Zhang, C. Yonzon, A. Haes, R. Van Duyne, "Localized surface plasmon resonance biosensors," Nanomedicine 1, 219-228 (2006).
  5. L. Pang, G. Hwang, Y. Fainman, "Surface plasmon resonance nanohole array sensor and its application on protein specific binding," Frontiers in Opt. (2007).
  6. W. P. Hu, S. J. Chen, K. T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, K. A. Lai, "A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film," Biosensors Bioelectron. 19, 1465-1471 (2004).
  7. Y. Xinglong, W. Dingxin, Y. Zibo, "Simulation and analysis of surface plasmon resonance biosensor based on phase detection," Sensor Actuat.—Chemical 91, 285-290 (2003).
  8. K.-S. Lee, J. M. Son, D.-Y. Jeong, T. S. Lee, W. M. Kim, "Resolution enhancement in surface plasmon resonance sensor based on waveguide coupled mode by combining a bimetallic approach," Sensors 10, 11390-11399 (2010).
  9. S. H. Choi, Y. L. Kim, K. M. Byun, "Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors," Opt. Exp. 19, 458-466 (2011).
  10. Y. Wang, J. Dostalek, W. Knoll, "Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance," Anal. Chem. 83, 6202-6207 (2011).
  11. K. M. Byun, S. J. Kim, D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors with metallic nanowires," Appl. Opt. 45, 3382-3389 (2006).
  12. M. Piliarik, H. ípová, P. Kvasnicka, N. Galler, J. R. Krenn, J. Í. Homola, "High-resolution biosensor based on localized surface plasmons," Opt. Exp. 20, 672-680 (2012).
  13. G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, I. Rubinstein, "Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films," J. Amer. Chem. Soc. 123, 3177-3178 (2001).
  14. K. Kim, S. J. Yoon, D. Kim, "Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: A theoretical study," Opt. Exp. 14, 12419-12431 (2006).
  15. K. Byun, M. L. Shuler, S. J. Kim, S. Yoon, D. Kim, "Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires," J. Lightw. Technol. 26, 1472-1478 (2008).
  16. K. M. Byun, S. J. Yoon, D. Kim, S. J. Kim, "Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires," Opt. Lett. 32, 1902-1904 (2007).
  17. C. Lin, F. Chien, L. Yu, C. Chang, K. Chiu, S. Chen, "Surface plasmon resonance biosensors with subwavelength grating waveguide," Proc. SPIE (2007) pp. 64500L.
  18. E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Z Physik 241, 313-324 (1971).
  19. D. J. Kim, D. Kim, "Subwavelength grating-based nanoplasmonic modulation for surface plasmon resonance imaging with enhanced resolution," J. Opt. Soc. Aerm. B 27, 1252-1259 (2010).
  20. T. Schuster, R. Herschel, N. Neumann, C. G. Schäffer, "Miniaturized long-period fiber grating assisted surface plasmon resonance sensor," J. Lightw. Technol. 30, 1003-1008 (2012).
  21. S. M. Jang, D. Kim, S. H. Choi, K. M. Byun, S. J. Kim, "Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings," Appl. Opt. 50, 2846-2854 (2011).
  22. L. Wu, H. S. Chu, W. S. Koh, E. P. Li, "Highly sensitive graphene biosensors based on surface plasmon resonance," Opt. Exp. 18, 14395-14400 (2010).
  23. W. K. Jung, N.-H. Kim, K. M. Byun, "Numerical study on an application of subwavelength dielectric gratings for high-sensitivity plasmonic detection," Appl. Opt. 51, 4722-4729 (2012).
  24. Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, C. C. Davis, "Strong optical coupling effects through a continuous metal film with a surface dielectric grating," Proc. SPIE (2005) pp. 59271Y-9.
  25. P. Drude, "Zur Elektronentheorie der metalle," Annalen Der Physik 1, 566-613 (1900).
  26. A. K. Sharma, Rajan, B. D. Gupta, "Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor," Opt. Commun. 274, 320-326 (2007).
  27. C. F. Mandenius, A. Chollet, M. Mecklenburg, I. Lundström, K. Mosbach, "Optical surface methods for detection of nucleic acid binding," Anal. Lett. 22, 2961-2973 (1989).
  28. S. H. Choi, K. M. Byun, "Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection," J. Opt. Soc. Amer. A 27, 2229-2236 (2010).
  29. I. D. Rukhlenko, A. Pannipitiya, M. Premaratne, "Dispersion relation for surface plasmon polaritons in metal/nonlinear-dielectric/metal slot waveguides," Opt. Lett. 36, 3374-3376 (2011).
  30. J. Homola, "Electromagnetic theory of surface plasmons," Surface Plasmon Resonance Based Sensors 4, 3-44 (2006).
  31. E. Kretschmann, "Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmaschwingungen," Zeitschrift für Physik A Hadrons and Nuclei 241, 4 (1971).
  32. I. Abdulhalim, M. Auslender, S. Hava, "Grating based nanophotonic structured configurations for biosensing," Biosensing 7035, (2008).
  33. P. M. Nellen, K. Tiefenthaler, W. Lukosz, "Integrated optical input grating couplers as biochemical sensors," Sensor Actuat. 15, 285-295 (1988).
  34. C. Y. Lin, F. C. Chien, L. Y. Yu, C. W. Chang, K. C. Chiu, S. J. Chen, "Surface plasmon resonance biosensors with subwavelength grating waveguide—Art. no. 64500L," Plasmonics Biol. Med. IV 6450, L4500-L4500 (2007).
  35. H. Raether, "Surface-plasmons on smooth and rough surfaces and on gratings," Springer Tr. Mod. Phys. 111, 1-133 (1988).
  36. W. Sellmeier, "Theorie der anomal licht-dispersion," Ann. Phys. Chem. 143, 271-282 (1871).
  37. A. Ghatak, K. Thyagarajan, An Introduction to Fiber Optics (Cambridge Univ. Press, 1998).
  38. I. Malitson, Interspecimen Comparison of the Refractive Index of Fused Silica (OSA, 1965).
  39. A. Sharma, G. Mohr, "Theoretical understanding of an alternating dielectric multilayer-based fiber optic SPR sensor and its application to gas sensing," New. J. Phys. 10, 023039 (2008).
  40. M. Bruna, S. Borini, "Optical constants of graphene layers in the visible range," Appl. Phys. Lett. 94, 031901-031901-3 (2009).
  41. R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, A. Geim, "Fine structure constant defines visual transparency of graphene," Science 320, 1308 (2008).
  42. M. S. Islam, A. Z. Kouzani, "S-parameters-based detection method for a multilayer SPR biosensor," Proc. EMBC (2012) pp. 539-542.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited