OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1399–1408

Novel High-Speed Polarization Source for Decoy-State BB84 Quantum Key Distribution Over Free Space and Satellite Links

Zhizhong Yan, Evan Meyer-Scott, Jean-Philippe Bourgoin, Brendon L. Higgins, Nikolay Gigov, Allison MacDonald, Hannes Hübel, and Thomas Jennewein

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1399-1408 (2013)


View Full Text Article

Acrobat PDF (1825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

To implement the BB84 decoy-state quantum key distribution (QKD) protocol over a lossy ground-satellite quantum uplink requires a source that has high repetition rate of short laser pulses, long term stability, and no phase correlations between pulses. We present a new type of telecom optical polarization and amplitude modulator, based on a balanced Mach–Zehnder interferometer configuration, coupled to a polarization-preserving sum-frequency generation (SFG) optical setup, generating 532 nm photons with modulated polarization and amplitude states. The weak coherent pulses produced by SFG meet the challenging requirements for long range QKD, featuring a high clock rate of 76 MHz, pico-second pulse width, phase randomization, and 98% polarization visibility for all states. Successful QKD has been demonstrated using this apparatus with full system stability up to 160 minutes and channel losses as high 57 dB . We present the design and simulation of the hardware through the Mueller matrix and Stokes vector relations, together with an experimental implementation working in the telecom wavelength band. We show the utility of the complete system by performing high loss QKD simulations, and confirm that our modulator fulfills the expected performance.

© 2013 IEEE

Citation
Zhizhong Yan, Evan Meyer-Scott, Jean-Philippe Bourgoin, Brendon L. Higgins, Nikolay Gigov, Allison MacDonald, Hannes Hübel, and Thomas Jennewein, "Novel High-Speed Polarization Source for Decoy-State BB84 Quantum Key Distribution Over Free Space and Satellite Links," J. Lightwave Technol. 31, 1399-1408 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-9-1399


Sort:  Year  |  Journal  |  Reset

References

  1. E. Meyer-Scott, Z. Yan, A. Mac Donald, J.-P. Bourgoin, H. Hübel, T. Jennewein, "How to implement decoy-state quantum key distribution for a satellite uplink with 50-dB channel loss," Phys. Rev. A 84, 062326 (2011).
  2. J. G. Rarity, P. R. Tapster, P. M. Gorman, P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, 82 (2002).
  3. E.-L. Miao, Z.-F. Han, T. Zhang, G.-C. Guo, "The feasibility of geostationary satellite-to-ground quantum key distribution," Phys. Lett. A 361, 29-32 (2007).
  4. P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, C. Barbieri, "Experimental verification of the feasibility of a quantum channel between space and earth," New J. Phys. 10, 033038 (2008) (12pp).
  5. C. Bonato, A. Tomaello, V. D. Deppo, G. Naletto, P. Villoresi, "Feasibility of satellite quantum key distribution," New J. Phys. 11, 045017 (2009) (25pp).
  6. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
  7. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, A. J. Shields, "Gigahertz decoy quantum key distribution with 1 mbit/s secure key rate," Opt. Exp. 16, 18 790-18 797 (2008).
  8. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, A. J. Shields, "Continuous operation of high bit rate quantum key distribution," Appl. Phys. Lett. 96, 161102 (2010).
  9. M. Jofre, A. Gardelein, G. Anzolin, G. Molina-Terriza, J. P. Torres, M. W. Mitchell, V. Pruneri, "100 mhz amplitude and polarization modulated optical source for free-space quantum key distribution at 850 nm," J. Lightw. Technol. 28, 2572-2578 (2010).
  10. M. Jofre, A. Gardelein, G. Anzolin, W. Amaya, J. Capmany, R. Ursin, L. Penate, D. Lopez, J. L. S. Juan, J. A. Carrasco, F. Garcia, F. J. Torcal-Milla, L. M. Sanchez-Brea, E. Bernabeu, J. M. Perdigues, T. Jennewein, J. P. Torres, M. W. Mitchell, V. Pruneri, "Fast optical source for quantum key distribution based on semiconductoroptical amplifiers," Opt. Exp. 19, 3825-3834 (2011).
  11. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, S. Ten, "High rate long distance quantum key distribution over 250 km of ultra low loss fibres," New J. Phys. 11, 075003 (2009).
  12. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 84, 4729-4732 (2000).
  13. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, N. Gisin, "Ppln waveguide for quantum communication," Eur. Phys. J. D. Atomic, Molecular, Optical Plasma Phys. 18, 155-160 (2002).
  14. E. Meyer-Scott, H. Hubel, A. Fedrizzi, C. Erven, G. Weihs, T. Jennewein, "Quantum entanglement distribution with 810 nm photons through telecom fibers," Appl. Phys. Lett. 97, 031117 (2010).
  15. X. Ma, C.-H. F. Fung, H.-K. Lo, "Quantum key distribution with entangled photon sources," Phys. Rev. A 76, 012307 (2007).
  16. C. Erven, X. Ma, R. Laflamme, G. Weihs, "Entangled quantum key distribution with a biased basis choice," New J. Phys. 11, 045025 (2009) (15pp).
  17. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, A. Zeilinger, "Long-distance quantum communication with entangled photons using satellites," IEEE J. Sel. Topics Quantum Electron. 9, 1541-1551 (2003).
  18. D. Gottesman, H.-K. Lo, N. Lütkenhaus, J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Information and Computation 4, 325-360 (2004).
  19. R. H. Hadfield, "Single-photon detectors for optical quantum information applications," Nat Photon 3, 696-705 (2009).
  20. E. Meyer-Scott, Experimental Quantum Communication in Demanding Regimes Master's thesis Univ. WaterlooWaterlooONCanada (2011).
  21. F. Dios, J. A. Rubio, A. Rodríguez, A. Comerón, "Scintillation and beam-wander analysis in an optical ground station-satellite uplink," Appl. Opt. 43, 3866-3873 (2004).
  22. C. H. Bennett, G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," Proc. Int. Conf. Comput., Syst. Signal Process. (1984) pp. 175-179.
  23. X. Liu, C. Liao, J. Mi, J. Wang, S. Liu, "Intrinsically stable phase-modulated polarization encoding system for quantum key distribution," Phys. Lett. A 373, 54-57 (2008).
  24. M. Toyoshima, H. Takenaka, Y. Shoji, Y. Takayama, Y. Koyama, H. Kunimori, "Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space," Opt. Exp. 17, 22 333-22 340 (2009) http://www.opticsexpress.org/abstract.cfm?URI=oe-17-25-22333.
  25. Y. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, K. Chen, Z.-B. Chen, J.-W. Pan, "Decoy-state quantum key distribution with polarized photons over 200 km," Opt. Exp. 18, 8587-8594 (2010).
  26. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, W. Tittel, "Proof-of-concept of real-world quantum key distribution with quantum frames," New J. Phys. 11, 095001 (2009) http://stacks.iop.org/1367-2630/11/i=9/a=095001.
  27. G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000).
  28. W.-Y. Hwang, "Quantum key distribution with high loss: Toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).
  29. H.-K. Lo, X. Ma, K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
  30. X. Ma, B. Qi, Y. Zhao, H.-K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005).
  31. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  32. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  33. G. Li, P. Yu, "Optical intensity modulators for digital and analog applications," J. Lightw. Technol. 21, 2010-2030 (2003).
  34. H. G. Berry, G. Gabrielse, A. E. Livingston, "Measurement of the Stokes parameters of light," Appl. Opt. 16, 3200-3205 (1977).
  35. D. Elkouss, A. Leverrier, R. Alleaume, J. J. Boutros, "Efficient reconciliation protocol for discrete-variable quantum key distribution," Proc. IEEE Int. Symp. Inf. Theory (2009) pp. 1879-1883.
  36. J.-P. Bourgoin, E. Meyer-Scott, B. L. Higgins, B. Helou, C. Erven, H. Hübel, B. Kumar, D. Hudson, I. D'Souza, R. Girard, R. Laflamme, T. Jennewein, "A comprehensive design and performance analysis of low earth orbit satellite quantum communication," New J. Phys. 15, 023006 (2013) http://stacks.iop.org/1367-2630/15/i=2/a=023006.
  37. (2012) http://www.xilinx.com/products/silicon-devices/fpga/index.htm/.
  38. (2012) https://www.hittite.com/.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited