OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1418–1425

Femtosecond Laser Structuring of Polymer Optical Fibers for Backscatter Sensing

Sascha Liehr, Jörg Burgmeier, Katerina Krebber, and Wolfgang Schade

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1418-1425 (2013)


View Full Text Article

Acrobat PDF (1393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Focused femtosecond laser pulses are used to create scattering damage in the core of polymer optical fibers (POF). The resulting structures are investigated regarding morphology by light microscopy and backscattered intensity using optical time domain reflectometry (OTDR). Quasi-distributed optical fiber sensing is proposed by evaluating backscatter changes at the inscribed scatter centers. Application examples for quasi-distributed measurement of fiber bends and temperature are demonstrated.

© 2013 IEEE

Citation
Sascha Liehr, Jörg Burgmeier, Katerina Krebber, and Wolfgang Schade, "Femtosecond Laser Structuring of Polymer Optical Fibers for Backscatter Sensing," J. Lightwave Technol. 31, 1418-1425 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-9-1418


Sort:  Year  |  Journal  |  Reset

References

  1. S. Liehr, P. Lenke, M. Wendt, K. Krebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, J. C. Munich, "Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring," IEEE Sensors J. 9, 1330-1338 (2009).
  2. S. Liehr, M. Wendt, K. Krebber, "Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry," Meas. Sci. Technol. 21, 094023-1-094023-6 (2010).
  3. P. Lenke, M. Wendt, S. Liehr, K. Krebber, "Distributed humidity sensing based on Rayleigh scattering in polymer optical fibers," Proc. SPIE (2010) pp. 76533X-76533X-4.
  4. S. Liehr, P. Lenke, K. Krebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, J. C. Münich, L. Stempniewski, "Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles," Proc. SPIE (2008) pp. 700302-700302-15.
  5. L. Bilro, J. G. Oliveira, J. L. Pinto, R. N. Nogueira, "POF metrology in physics medicine and rehabilitation," Proc. SPIE (2010) pp. 76531T-76531T-4.
  6. N. Nurgiyatna, P. Scully, K. B. Ozanyan, "Grooved fiber sensors for deformation imaging," Proc. 2010 IEEE Sens. (2010) pp. 1675-1680.
  7. Y. Fu, H. Di, R. Liu, "Light intensity modulation fiber-optic sensor for curvature measurement," Opt. Laser Technol. 42, 594-599 (2010).
  8. K. S. C. Kuang, W. J. Cantwell, P. J. Scully, "An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements," Meas. Sci. Technol. 13, 1523-1534 (2002).
  9. M. Lomer, A. Quintela, M. López-Amo, J. Zubia, J. M. López-Higuera, "A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable," Meas. Sci. Technol. 18, 2261-2267 (2007).
  10. S. Liehr, J. Burgmeier, W. Schade, K. Krebber, "Fiber optic bend and temperature sensing in femtosecond laser-structured POF," Proc. SPIE (2012) pp. 84213I-84213I-4.
  11. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Optical ablation by high-power short-pulse lasers," J. Opt. Soc. Amer. B 13, 459-468 (1996).
  12. D. von der Linde, K. Sokolowski-Tinten, J. Bialkowski, "Laser-solid interaction in the femtosecond time regime," Appl. Surf. Sci. 109–110, 1-10 (1997).
  13. R. R. Gattass, E. Mazur, "Femtosecond laser micromachining in transparent materials," Nature Photon. 2, 219-225 (2008).
  14. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, K. Itoh, "Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses," Opt. Exp. 14, 291-297 (2006).
  15. D. F. Farson, "Femtosecond laser bulk micromachining of microfluid channels in poly(methylmethacrylate)," J. Laser Appl. 18, 210 (2006).
  16. E. N. Glezer, E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
  17. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996).
  18. C. B. Schaffer, A. O. Jamison, E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004).
  19. E. Toratani, M. Kamata, M. Obara, "Self-fabrication of void array in fused silica by femtosecond laser processing," Appl. Phys. Lett. 87, 171103-171103-3 (2005).
  20. S. Sowa, W. Watanabe, J. Nishii, K. Itoh, "Filamentary cavity formation in poly(methyl methacrylate) by single femtosecond pulse," Appl. Phys. A 81, 1587-1590 (2005).
  21. M. Terakawa, E. Toratani, T. Shirakawa, M. Obara, "Fabrication of a void array in dielectric materials by femtosecond laser micro-processing for compact photonic devices," Appl. Phys. A 100, 1041-1047 (2010).
  22. J. Krüger, W. Kautek, "Ultrashort pulse laser interaction with dielectrics and polymers," Adv. Polymer Sci. 168, 247-289 (2004).
  23. S. Baudach, J. Bonse, J. Krüger, W. Kautek, "Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate," Appl. Surf. Sci. 154–155, 555-560 (2000).
  24. A. Baum, W. Perrie, P. J. Scully, M. Basanta, C. L. Thomas, N. J. Goddard, P. R. Fielden, P. Chalker, "Refractive index structures in poly(methyl methacrylate) and polymer optical fibre by femtosecond laser irradiation," Opt. Fiber Sens. TuE25 (2006).
  25. P. J. Scully, D. Jones, D. A. Jaroszynski, "Femtosecond laser irradiation of polymethylmethacrylate for refractive index gratings," J. Opt. A: Pure Appl. Opt. 5, S92-S96 (2003).
  26. M. Stecher, R. J. Williams, O. Bang, G. D. Marshall, M. J. Whitford, G. Town, "Periodic refractive index modifications inscribed in polymer optical fibre by focused IR femtosecond pulses," Proc. 18th Int. Conf. POF (2009).
  27. S. J. Liang, P. J. Scully, J. Schille, J. Vaughan, W. Perrie, "Femtosecond laser induced refractive index structures in polymer optical fibre (POF) for sensing," Proc. SPIE (2009) pp. 75036S-75036S-4.
  28. S. Liang, P. J. Scully, J. Schille, J. Vaughan, M. Benyezzar, D. Liu, W. Perrie, "Writing parameters for 3-D refractive index structures in polymethyl methacrylate using femtosecond radiation at 400 nm," J. Laser Micro Nanoeng. 5, 68-73 (2010).
  29. A. Baum, P. J. Scully, W. Perrie, D. Liu, V. Lucarini, "Mechanisms of femtosecond laser-induced refractive index modification of poly(methyl methacrylate)," J. Opt. Soc. Amer. B 27, 107-111 (2010).
  30. A. Stefani, M. Stecher, G. E. Town, O. Bang, "Direct writing of fiber Bragg grating in microstructured polymer optical fiber," IEEE Photon. Technol. Lett. 24, 1148-1150 (2012).
  31. W. Yuan, L. Khan, D. J. Webb, K. Kalli, H. K. Rasmussen, A. Stefani, O. Bang, "Humidity insensitive TOPAS polymer fiber Bragg grating sensor," Opt. Exp. 19, 19731-19739 (2011).
  32. O. Matoba, Y. Kitamura, T. Manabe, K. Nitta, W. Watanabe, "Fabrication of controlled volume scattering medium in poly(methyl methacrylate) by focused femtosecond laser pulses," Appl. Phys. Lett. 95, 1114-1114-3 (2009).
  33. S. E. Golowich, W. White, W. A. Reed, E. Knudsen, "Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber," J. Lightw. Technol. 21, 111-121 (2003).
  34. S. Liehr, K. Krebber, "Application of quasi-distributed and dynamic length and power change measurement using optical frequency domain reflectometry," IEEE Sens. J. 12, 237-245 (2012).
  35. A. Djordjevich, M. Fung, R. Y. K. Fung, "Principles of deflection-curvature measurement," Meas. Sci. Technol. 12, 1983-1989 (2001).
  36. Y. Fu, H. Di, "Fiber-optic curvature sensor with optimized sensitive zone," Opt. Laser Technol. 43, 586-591 (2011).
  37. A. Hartog, "A distributed temperature sensor based on liquid-core optical fibers," J. Lightw. Technol. 1, 498-509 (1983).
  38. W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, P. S. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
  39. K. Ni, T. Li, L. Hu, W. Qian, Q. Zhang, S. Jin, "Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer," Opt. Commun. 285, 5148-5150 (2012).
  40. A. Martinez, Y. Lai, M. Dubov, I. Y. Khrushchev, I. Bennion, "Vector bending sensors based on fibre Bragg gratings inscribed by infrared femtosecond laser," Electron. Lett. 41, 472-474 (2005).
  41. H. J. Patrick, C. Chang, S. T. Vohra, "Long period fibre gratings for structural bend sensing," Electron. Lett. 34, 1773-1775 (1998).
  42. Y. Liu, J. A. R. Williams, I. Bennion, "Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating," IEEE Photon. Technol. Lett. 12, 531-533 (2000).
  43. C. De Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, R. Osellame, "Surface properties of femtosecond laser ablated PMMA," ACS Appl. Mater. Interf. 2, 2377-2384 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited