OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1426–1432

Symmetry Considerations for Closed Loop Photonic Crystal Coupled Resonators

Matthew D. Weed, Charles G. Williams, Peter J. Delfyett, and Winston V. Schoenfeld

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1426-1432 (2013)


View Full Text Article

Acrobat PDF (1150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Waveguide coupling to closed loop coupled-resonator optical waveguides is explored. By coupling a CROW chain back on itself, a reduction in individual resonant linewidth is achieved making these slow light modes more conducive to periodic filters toward novel frequency-comb integration. Through numerical simulation by finite-difference time-domain methods, the importance of waveguide symmetry conditions for coupling is illustrated. The impact of unit cavity mode symmetry strongly impacts the necessary coupling geometry to both cavities and waveguides. Design insight into different waveguide coupling schemes is provided while aiming to achieve transmission of the resonant structure exhibited by the isolated resonator.

© 2013 IEEE

Citation
Matthew D. Weed, Charles G. Williams, Peter J. Delfyett, and Winston V. Schoenfeld, "Symmetry Considerations for Closed Loop Photonic Crystal Coupled Resonators," J. Lightwave Technol. 31, 1426-1432 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-9-1426


Sort:  Year  |  Journal  |  Reset

References

  1. V. Chaudhery, C. S. Huang, A. Pokhriyal, J. Polans, B. T. Cunningham, "Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays," Opt. Exp. 19, 23327-23340 (2011).
  2. T. Lei, A. W. Poon, "Modeling of coupled-resonator optical waveguide (CROW) based refractive index sensors using pixelized spatial detection at a single wavelength," Opt. Exp. 19, 22227-22241 (2011).
  3. S. Yamada, B. S. Song, T. Asano, S. Noda, "Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities," Opt. Lett. 36, 3981-3983 (2011).
  4. C. Sorrentino, J. R. E. Toland, C. P. Search, "Ultra-sensitive chip scale Sagnac gyroscope based on periodically modulated coupling of a coupled resonator optical waveguide," Opt. Exp. 20, 354-363 (2012).
  5. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, J. Vuckovic, "Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser," Nature Photon. 5, 297-300 (2011).
  6. Y. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, J. Vuckovic, "Nanobeam photonic crystal cavity quantum dot laser," Opt. Exp. 18, 8781-8789 (2010).
  7. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, M. Notomi, "High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted," Nature Photon. 4, 648-654 (2010).
  8. S. Mookherjea, "Semiconductor coupled-resonator optical waveguide laser," Appl. Phys. Lett. 84, 3265-3267 (2004).
  9. W. H. Zheng, W. J. Zhou, Y. F. Wang, A. J. Liu, W. Chen, H. L. Wang, F. Y. Fu, A. Y. Qi, "Lateral cavity photonic crystal surface-emitting laser with ultralow threshold," Opt. Lett. 36, 4140-4142 (2011).
  10. B. Corcoran, M. D. Pelusi, C. Monat, J. T. Li, L. O'Faolain, T. F. Krauss, B. J. Eggleton, "Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide," Opt. Lett. 36, 1728-1730 (2011).
  11. P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, S. Bhooplapur, "Advanced Ultrafast Technologies Based on Optical Frequency Combs," IEEE Sel. Topics Quantum Electron. 18, 258-274 (2012).
  12. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, D. J. Moss, "CMOS-compatible integrated optical hyper-parametric oscillator," Nature Photon. 4, 41-45 (2010).
  13. C. Agger, T. S. Skovgard, N. Gregersen, J. Mork, "Modeling of mode-locked coupled-resonator optical waveguide lasers," IEEE J. Quantum Electron. 46, 1804-1812 (2010).
  14. T. Baba, "Slow light in photonic crystals," Nature Photon. 2, 465-473 (2008).
  15. N. Ishikura, T. Baba, E. Kuramochi, M. Notomi, "Large tunable fractional delay of slow light pulse and its application to fast optical correlator," Opt. Exp. 19, 24102-24108 (2011).
  16. Y. Liu, Z. Wang, M. H. Han, S. H. Fan, R. Dutton, "Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides," Opt. Exp. 13, 4539-4553 (2005).
  17. M. Notomi, E. Kuramochi, T. Tanabe, "Large-scale arrays of ultrahigh-Q coupled nanocavities," Nature Photon. 2, 741-747 (2008).
  18. S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, "Dispersion engineered slow light in photonic crystals: A comparison," J. Opt. 12, (2010).
  19. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999).
  20. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. J. Green, S. Assefa, F. N. Xia, Y. A. Vlasov, S. Mookherjea, "Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides," Opt. Exp. 18, 26505-26516 (2010).
  21. T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, T. F. Krauss, "Observation of pulse compression in photonic crystal coupled cavity waveguides," J. Lightw. Technol. 22, 514-519 (2004).
  22. H. C. Liu, A. Yariv, "Synthesis of high-order bandpass filters based on coupled-resonator optical waveguides (CROWs)," Opt. Exp. 19, 17653-17668 (2011).
  23. H. C. Liu, A. Yariv, "“Ideal” optical delay lines based on tailored-coupling and reflecting, coupled-resonator optical waveguides," Opt. Lett. 37, 1964-1966 (2012).
  24. M. D. Weed, C. Williams, P. Delfyett, W. V. Schoenfeld, "Feedback in coupled-resonance optical waveguides," Proc. OSA CLEO (2012) pp. CM3M.4.
  25. J. K. S. Poon, J. Scheuer, A. Yariv, "Wavelength-selective reflector based on a circular array of coupled microring resonators," IEEE Photon. Technol. Lett. 16, 1331-1333 (2004).
  26. S. V. Boriskina, "Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: A proposal and numerical analysis," J. Opt. Soc. Amer. B Opt. Phys. 23, 1565-1573 (2006).
  27. L. Chremmos, N. Uzunoglu, "Properties of regular polygons of coupled microring resonators," App. Opt. 46, 7730-7738 (2007).
  28. J. Scheuer, A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, (2006).
  29. B. Z. Steinberg, "Rotating photonic crystals: A medium for compact optical gyroscopes," Phys. Rev. E 71, (2005).
  30. V. Van, "Dual-mode microring reflection filters," J. Lightw. Technol. 25, 3142-3150 (2007).
  31. M. Sumetsky, B. J. Eggleton, "Modeling and optimization of complex photonic resonant cavity circuits," Opt. Exp. 11, 381-391 (2003).
  32. A. R. A. Chalcraft, S. Lam, B. D. Jones, D. Szymanski, R. Oulton, A. C. T. Thijssen, M. S. Skolnick, D. M. Whittaker, T. F. Krauss, A. M. Fox, "Mode structure of coupled L3 photonic crystal cavities," Opt. Exp. 19, 5670-5675 (2011).
  33. S. Declair, T. Meier, A. Zrenner, J. Forstner, "Numerical analysis of coupled photonic crystal cavities," Photon. Nanostruct. Fundam. Appl. 9, 345-350 (2011).
  34. A. Faraon, E. Waks, D. Englund, I. Fushman, J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, (2007).
  35. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited