OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1433–1446

Optical Scattering Induced Noise in Fiber Ring Resonators and Optoelectronic Oscillators

Khaldoun Saleh, Olivier Llopis, and Gilles Cibiel

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1433-1446 (2013)

View Full Text Article

Acrobat PDF (2710 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper reports both theoretical and experimental studies on nonlinear optical phenomena generated at very low thresholds in fiber ring resonators featuring ultrahigh quality factors. These studies are focused on two optical scattering phenomena: the Rayleigh and the Brillouin scatterings. The effects of these scattering phenomena on the phase noise of an optoelectronic oscillator based on the fiber ring resonator are detailed. A 30 dB reduction in the oscillator phase noise at 10 Hz offset frequency has been demonstrated by limiting the nonlinear scattering effects when using low input optical power. Moreover, a new high quality factor fiber ring resonator, optimized and immunized against some of these nonlinear optical effects, has been designed and an oscillator phase noise level of -50 dBc/Hz at 10 Hz offset frequency has been achieved.

© 2013 IEEE

Khaldoun Saleh, Olivier Llopis, and Gilles Cibiel, "Optical Scattering Induced Noise in Fiber Ring Resonators and Optoelectronic Oscillators," J. Lightwave Technol. 31, 1433-1446 (2013)

Sort:  Year  |  Journal  |  Reset


  1. G. Cibiel, M. Regis, O. Llopis, A. Rennane, L. Bary, R. Plana, Y. Kersale, V. Giordano, "Optimization of an ultra-low phase noise sapphire-SiGe HBT oscillator using nonlinear CAD," IEEE Trans. Ultrason., Ferroelectr. Freq. Contr. 51, 33-41 (2004).
  2. X. S. Yao, L. Maleki, "Optoelectronic microwave oscillator," J. Opt. Soc. Amer. B 13, 1725-1735 (1996).
  3. X. S. Yao, L. Maleki, "Progress in the optoelectronic oscillator—A ten year anniversary review," Proc. IEEE Microw. Theory Tech. Symp. Dig. (2004) pp. 287-290.
  4. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, M. Horowitz, "Spurious mode reduction in dual injection-locked optoelectronic oscillators," Opt. Exp. 19, 5839-5854 (2011).
  5. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, "Kilohertz optical resonances in dielectric crystal cavities," Phys. Rev. A 70, 05804 (2004).
  6. A. Bouchier, K. Saleh, P. H. Merrer, O. Llopis, G. Cibiel, "Theoretical and experimental study of the phase noise of opto-electronic oscillators based on high quality factor optical resonators," Proc. 2010 IEEE-IFCS pp. 544-548.
  7. K. Saleh, A. Bouchier, P. H. Merrer, O. Llopis, G. Cibiel, "Fiber ring resonator based opto-electronic oscillator: Phase noise optimisation and thermal stability study," Proc. SPIE 7936 (2011).
  8. K. Saleh, P. H. Merrer, O. Llopis, G. Cibiel, "Optoelectronic oscillator based on fiber ring resonator: Overall system optimization and phase noise reduction," Proc. IEEE Int. Freq. Contr. Symp. (FCS) pp. 1–6, 21-24.
  9. L. F. Stokes, M. Chodorow, H. J. Shaw, "All-single-mode fiber resonator," Opt. Lett. 7, 288-290 (1982).
  10. S. Norcia, S. Tonda-Goldstein, D. Dolfi, J. Huignard, R. Frey, "Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals," Opt. Lett. 28, 1888-1890 (2003).
  11. T. Zhu, X. Bao, L. Chen, "A single longitudinal-mode tunable fiber ring laser based on stimulated rayleigh scattering in a nonuniform optical fiber," J. Lightw. Technol. 29, 1802-1807 (2011).
  12. K. Saleh, P. H. Merrer, O. Llopis, G. Cibiel, "Millimeter wave generation using Brillouin scattering in a high Q fiber ring resonator," Proc. 2012 IEEE Int. Topical Meeting on Microwave Photonics (MWP) (2012).
  13. X. S. Yao, "High-quality microwave signal generation by use of Brillouin scattering in optical fibers," Opt. Lett. 22, 1329-1331 (1997).
  14. P. H. Merrer, H. Brahimi, O. Llopis, "Optical techniques for microwave frequency stabilization: Resonant versus delay line approaches and related modelling problems," Proc. Int. Topical Meeting Microw. Photon., 2008. Jointly Held With the 2008 Asia-Pacific Microw. Photon. Conf. MWP/APMP 2008 (2008) pp. 146-149.
  15. P. H. Merrer, A. Bouchier, H. Brahimi, O. Llopis, G. Cibiel, "High-Q optical resonators for stabilization of high spectral purity microwave oscillators," Proc. 2009 IEEE EFTF-IFCS pp. 866-869.
  16. F. Zhang, J. Lit, "Direct-coupling single-mode fiber ring resonator," J. Opt. Soc. Amer. A 5, 1347-1355 (1988).
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  19. O. Okusaga, J. Cahill, W. Zhou, A. Docherty, G. M. Carter, C. R. Menyuk, "Optical scattering induced noise in RF-photonic systems," Proc. Freq. Contr. Eur. Freq. Time Forum (FCS), 2011 Joint Conf. IEEE Int. pp. 1-6.
  20. A. I. Filipenko, "End face nonperpendicularity analysis in fiber connectors," Proc. 3rd Int. Workshop Laser Fiber-Optical Networks Modeling 2001 pp. 53-55.
  21. L. Brillouin, "Diffusion de la lumiere par un corps transparents homogene," Ann. Phys. 17, 88 (1922).
  22. A. Kobyakov, M. Sauer, D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010).
  23. Q. Yu, X. Bao, L. Chen, "Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers," Opt. Lett. 29, 17-19 (2004).
  24. M. Nikles, L. Thevenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).
  25. X. S. Yao, "Brillouin selective sideband amplification of microwave photonic signals," IEEE Photon. Technol. Lett. 10, 138-140 (1998).
  26. A. Debut, S. Randoux, J. Zemmouri, "Linewidth narrowing in Brillouin lasers: Theoretical analysis," Phys. Rev. A 62, 023803 (2000).
  27. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, S. Jiang, "Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth," IEEE Photon. Technol. Lett. 18, 1813-1815 (2006).
  28. L. Stépien, S. Randoux, J. Zemmouri, "Intensity noise in Brillouin fiber ring lasers," J. Opt. Soc. Amer. B 19, 1055-1066 (2002).
  29. Y. Song, X. Zhang, "High power low RIN Brillouin fiber laser with optoelectronic oscillator configuration," Proc. SPIE (2007).
  30. K. Saleh, P. H. Merrer, O. Llopis, G. Cibiel, "Optical scattering noise in high Q fiber ring resonators and its effect on optoelectronic oscillator phase noise," Opt. Lett. 37, 518-520 (2012).
  31. M. Borselli, K. Srinivasan, P. E. Barclay, O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693 (2004).
  32. T. Zhu, X. Bao, L. Chen, H. Liang, Y. Dong, "Experimental study on stimulated Rayleigh scattering in optical fibers," Opt. Exp. 18, 22958-22963 (2010).
  33. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  34. O. Okusaga, J. Cahill, A. Docherty, W. Zhou, C. Menyuk, "Guided entropy mode Rayleigh scattering in optical fibers," Opt. Lett. 37, 683-685 (2012).
  35. A. B. Ruffin, "Stimulated Brillouin scattering: An overview of measurements, system impairments, and applications," Proc. Tech. Dig. Symp. Optical Fiber Meas. 2004 pp. 23-28.
  36. N. Shibata, R. Braun, R. Waarts, "Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1205-1210 (1987).
  37. C. M. McIntosh, A. G. Grandpierre, D. N. Christodoulides, J. Toulouse, J.-M. P. Delavaux, "Eliminating SRS channel depletion in massive WDM systems via optical filtering techniques," IEEE Photon. Technol. Lett. 13, 302-304 (2001).
  38. Q. Yu, X. Bao, L. Chen, "Strain dependence of Brillouin frequency, intensity, and bandwidthin polarization-maintaining fibers," Opt. Lett. 29, 1605-1607 (2004).
  39. T. Parker, M. Farhadiroushan, V. Handerek, A. Rogers, "Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers," Opt. Lett. 22, 787-789 (1997).
  40. W. Zou, Z. He, K. Hotate, "Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber," Opt. Exp. 17, 1248-1255 (2009).
  41. S. L. Floch, P. Cambon, "Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars)," Opt. Commun. 219, 395-410 (2003).
  42. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightw. Technol. 19, 1691-1697 (2001).
  43. N. Yoshizawa, T. Horiguchi, T. Kurashima, "Proposal for stimulated Brillouin scattering suppression by fibre cabling," Electron. Lett. 27, 1100-1101 (1991).
  44. R. Engelbrecht, M. Mueller, B. Schmauss, "SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine," Proc. IEEE/LEOS Winter Top. Meeting Ser. 2009 pp. 248-249.
  45. J. Cahill, O. Okusaga, J. White, "Suppression of stimulated Brillouin scattering in high power, low phase noise RF-photonic links," Proc. 2012 IEEE Int. FCS pp. 1-4.
  46. Y. Takushima, T. Okoshi, "Suppression of stimulated Brillouin scattering using optical isolators," Electron. Lett. 28, 1155-1157 (1992).
  47. K. Saleh, P. H. Merrer, A. Ali-Slimane, O. Llopis, G. Cibiel, "Study of the noise processes in microwave oscillators based on passive optical resonators," Int. J. Microw. Wireless Technol. .
  48. D. Eliyahu, L. Maleki, "Modulation response (S21) of the coupled opto-electronic oscillator," Proc. 2005 IEEE Int. Freq. Contr. Symp. Expo. 2005 pp. 850-856.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited