OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1462–1467

Maximized Soliton Self-Frequency Shift in Non-Uniform Microwires by the Control of Third-Order Dispersion Perturbation

Alaa Al-Kadry and Martin Rochette

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1462-1467 (2013)


View Full Text Article

Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present a simple method based on the soliton perturbative theory to design microwires of non-uniform diameter profiles. In contrast to previous methods, the one presented here relies on minimizing the soliton perturbation by third order dispersion (TOD) while taking into account the change of the soliton local duration along the microwire. The method leads to a design that maximizes the soliton self-frequency shift in non-uniform microwires. The microwire design comprises a unique dispersion profile such that a wavelength-shifting soliton experiences only weak perturbations from the TOD and avoids shedding its energy into the dispersive waves. The TOD perturbation is quantified with an analytic expression $\epsilon$ that is kept below a threshold value, thus keeping a soliton weakly perturbed by TOD in every position within the microwire. Numerical simulations are conducted to check the validity of the method. We consider a fundamental soliton centered at a wavelength of 2000 nm propagating in As2Se3 microwires of length as short as 10 cm. The results show that optimized non-uniform diameter profile allows the tuning of the self-frequency shifted soliton over a spectral range of 860 nm.

© 2013 IEEE

Citation
Alaa Al-Kadry and Martin Rochette, "Maximized Soliton Self-Frequency Shift in Non-Uniform Microwires by the Control of Third-Order Dispersion Perturbation," J. Lightwave Technol. 31, 1462-1467 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-9-1462


Sort:  Year  |  Journal  |  Reset

References

  1. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  2. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, A. Tünnermann, "Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber," Opt. Lett. 34, 3499-3501 (2009).
  3. N. Savage, "Supercontinuum sources," Nat. Photon. 3, 114-115 (2009).
  4. F. M. Mitschke, L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
  5. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
  6. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, R. S. Windeler, "Soliton self-frequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001).
  7. N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
  8. D. V. Skryabin, F. Luan, J. C. Knight, P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
  9. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Magi, R. Pant, C. M. de Sterke, "Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber," J. Opt. Soc. Amer. B 26, 2064-2071 (2009).
  10. A. M. Al-kadry, M. Rochette, "Mid-infrared sources based on the soliton self-frequency shift," J. Opt. Soc. Amer. B 29, 1347-1355 (2012).
  11. P. Beaud, W. Hodel, B. Zysset, H. Weber, "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987).
  12. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, A. Tünnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Exp. 13, 9556-9569 (2005).
  13. A. V. Gorbach, D. V. Skryabin, "Theory of radiation trapping by the accelerating solitons in optical fibers," Phys. Rev. A 76, 053803 (2007).
  14. A. C. Judge, O. Bang, C. M. de Sterke, "Theory of dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber," J. Opt. Soc. Amer. B 27, 2195-2202 (2010).
  15. J. C. Travers, J. R. Taylor, "Soliton trapping of dispersive waves in tapered optical fibers," Opt. Lett. 34, 115-117 (2009).
  16. S. T. Sørensen, A. Judge, C. L. Thomsen, O. Bang, "Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum-group-acceleration matching," Opt. Lett. 36, 816-818 (2011).
  17. S. P. Stark, A. Podlipensky, P. St. J. Russell, "Soliton blueshift in tapered photonic crystal fibers," Phys. Rev. Lett. 106, 083903 (2011).
  18. S. P. Stark, J. C. Travers, P. St. J. Russell, "Extreme supercontinuum generation to the deep UV," Opt. Lett. 37, 770-772 (2012).
  19. S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, O. Bang, "Deep-blue supercontinnum sources with optimum taper profiles—Verification of GAM," Opt. Exp. 20, 10635-10645 (2012).
  20. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, J. Broeng, "Broadband light generation at 1300 nm through spectrally recoiled solitons and dispersive waves," Opt. Lett. 33, 621-623 (2008).
  21. Z. Chen, A. J. Taylor, A. Efimov, "Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper," Opt. Exp. 17, 5852-5860 (2009).
  22. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, R. Leonhardt, P. D. Drummond, "Direct measurement of pulse distortion near the zero-dispersion wavelength in an optical fiber by frequency-resolved optical gating," Opt. Lett. 22, 457-459 (1997).
  23. A. Hasegawa, F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion," Appl. Phys. Lett. 23, 142-144 (1973).
  24. J. P. Keener, D. W. McLaughlin, "Solitons under perturbations," Phys. Rev. A 16, 777-790 (1977).
  25. P. K. A. Wai, C. R. Menyuk, H. H. Chen, Y. C. Lee, "Soliton at the zero-group-dispersion wavelength of a single-model fiber," Opt. Lett. 12, 628-630 (1987).
  26. J. D. Love, "Spot size, adiabaticity and diffraction in tapered fibres," Electron. Lett. 23, 993-994 (1987).
  27. J. N. Elgin, "Soliton propagation in an optical fiber with third-order dispersion," Opt. Lett. 17, 1409-1410 (1992).
  28. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, "Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers," Opt. Lett. 11, 464-466 (1986).
  29. S. Roy, S. K. Bhadra, G. P. Agrawal, "Dispersive waves emitted by solitons perturbed by third-order dispersion inside optical fibers," Phys. Rev. A 79, 023824 (2009).
  30. J. N. Elgin, "Perturbations of optical solitons," Phys. Rev. A 47, 4331-4341 (1993).
  31. P. K. A. Wai, H. H. Chen, Y. C. Lee, "Radiations by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. A 41, 426-439 (1990).
  32. F. Biancalana, D. V. Skryabin, A. V. Yulin, "Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers," Phys. Rev. E 70, 016615 (2004).
  33. H. Steffensen, C. Agger, O. Bang, "Influence of two-photon absorption on soliton self-frequency shift," J. Opt. Soc. Amer. B 29, 484-492 (2012).
  34. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  35. J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harrison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, R. Miklos, "Development and infrared applications of chalcogenide glass optical fibers," Fiber Integr. Opt. 19, 296 (2000).
  36. J. S. Sanghera, L. B. Shaw, P. Pureza, V. Q. Nguyen, D. Gibson, L. Busse, I. D. Aggarwal, C. M. Florea, F. H. Kung, "Nonlinear properties of chalcogenide glass fibers," Int. J. Appl. Glass Sci. 1, 296-308 (2010).
  37. K. J. Blow, D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
  38. J. Hult, "A fourth-order runge-kutta in the interaction picture method for simulating supercontinuum generation in optical fibers," J. Lightw. Technol. 25, 3770-3775 (2007).
  39. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Amer. B 21, 1146-1155 (2004).
  40. N. Savage, "Optical parametric oscillators," Nat. Photon. 4, 124-125 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited