OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1462–1467

Maximized Soliton Self-Frequency Shift in Non-Uniform Microwires by the Control of Third-Order Dispersion Perturbation

Alaa Al-Kadry and Martin Rochette

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1462-1467 (2013)


View Full Text Article

Acrobat PDF (984 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present a simple method based on the soliton perturbative theory to design microwires of non-uniform diameter profiles. In contrast to previous methods, the one presented here relies on minimizing the soliton perturbation by third order dispersion (TOD) while taking into account the change of the soliton local duration along the microwire. The method leads to a design that maximizes the soliton self-frequency shift in non-uniform microwires. The microwire design comprises a unique dispersion profile such that a wavelength-shifting soliton experiences only weak perturbations from the TOD and avoids shedding its energy into the dispersive waves. The TOD perturbation is quantified with an analytic expression $\epsilon$ that is kept below a threshold value, thus keeping a soliton weakly perturbed by TOD in every position within the microwire. Numerical simulations are conducted to check the validity of the method. We consider a fundamental soliton centered at a wavelength of 2000 nm propagating in As2Se3 microwires of length as short as 10 cm. The results show that optimized non-uniform diameter profile allows the tuning of the self-frequency shifted soliton over a spectral range of 860 nm.

© 2013 IEEE

Citation
Alaa Al-Kadry and Martin Rochette, "Maximized Soliton Self-Frequency Shift in Non-Uniform Microwires by the Control of Third-Order Dispersion Perturbation," J. Lightwave Technol. 31, 1462-1467 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-9-1462

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited