OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 9 — May. 1, 2013
  • pp: 1475–1481

Design of a Novel Micro-Laser Formed by Monolithic Integration of a III-V Pillar With a Silicon Photonic Crystal Cavity

Zhechao Wang, Bin Tian, and Dries VanThourhout

Journal of Lightwave Technology, Vol. 31, Issue 9, pp. 1475-1481 (2013)

View Full Text Article

Acrobat PDF (976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A novel micro-laser configuration formed by integrating an InGaAs/InP pillar with a silicon photonic crystal cavity is proposed and analyzed in detail. Special attention is paid to designing the cavity such that it can accommodate large-size pillars without performance compromise. The Purcell effect is studied and predicted to be significant because of the close interaction between the cavity modes and the gain medium. An overall quality factor as high as 1 × 105 and a spontaneous emission factor close to unity are predicted. Possible limiting factors for laser performance, such as surface non-radiative recombination and the thermal dissipation properties are analyzed, and it is found that the proposed laser design is very robust. This comprehensive analysis suggests that the proposed micro-laser is a promising candidate for large-scale integration of micro-lasers on silicon for low power consumption applications, such as intra-chip optical communications.

© 2013 IEEE

Zhechao Wang, Bin Tian, and Dries VanThourhout, "Design of a Novel Micro-Laser Formed by Monolithic Integration of a III-V Pillar With a Silicon Photonic Crystal Cavity," J. Lightwave Technol. 31, 1475-1481 (2013)

Sort:  Year  |  Journal  |  Reset


  1. A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, J. E. Bowers, "A distributed feedback silicon evanescent laser," Opt. Exp. 16, 4413-4419 (2008).
  2. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. Geluk, T. Vries, P. Regreny, D. Thourhout, R. L. Baets, G. Morthier, "An ultra-small, low-power, all-optical flip-flop memory on a silicon chip," Nat. Photon 4, 182-187 (2010).
  3. M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C-Fan, J. Salerno, "First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a silicon substrate," Appl. Phys. Lett. 53, 2389-2391 (1988).
  4. M. Sugo, H. Mori, Y. Itoh, Y. Sakai, M. Tachikawa, "1.5 μm-Long-wavelength multiple quantum well laser on a Si substrate," Jpn. J. Appl. Phys 30, 3876-3878 (1991).
  5. S. Lourdudoss, "Heteroepitaxy and selective area heteroepitaxy for silicon photonics," Photon. Nanostr. Mater., Process. Characteriz. 16, 91-99 (2012).
  6. B. Kunert, S. Zinnkann, K. Volz, W. Stolz, "Monolithic integration of Ga(NAsP)/(BGa)P multi-quantum well structures on (0 0 1) silicon substrate by MOVPE," J. Cryst. Growth 310, 4776-4779 (2008).
  7. S. Liebich, M. Zimprich, A. Beyer, C. Lange, D. Franzbach, S. Chatterjee, "Laser operation onf Ga(NAsP) lattice-matched to (001) silicon substrate," Appl. Phys. Lett. 99, 071109-071109 (2011).
  8. S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, L. R. Dawson, D. L. Huffaker, "Simultaneous interfacial misfit array formation and antiphase domain suppression on miscut silicon substrates," Appl. Phys. Lett. 93, 071102-071102 (2008).
  9. E. Tournié, J. Reboul, L. Cerutti, J. Rodriguez, P. Grech, "Continuous wave operation above room temperature of GaSb-based laser diodes grown on Si," Appl. Phys. Lett. 99, 121113-121113 (2011).
  10. Z. Wang, C. Junesand, W. Metaferia, C. Hu, L. Wosinski, S. Lourdudoss, "III-Vs on Si for photonic applications-A monolithic approach," Mater. Sci. Eng. B 177, 1551-1557 (2012).
  11. J. Yang, P. Bhattacharya, "Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon," Opt. Exp. 16, 5136-5140 (2008).
  12. T. Wang, H. Liu, A. Lee, F. Pozzi, A. Seeds, "1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates," Opt. Exp. 19, 11381-11386 (2011).
  13. T. A. Langdo, C. W. Leitz, M. T. Currie, E. A. Fitzgerald, A. Lochtefeld, D. A. Antoniadis, "High quality Ge on Si by epitaxial necking," Appl. Phys. Lett. 76, 3700-3700 (2000).
  14. G. Wang, M. Leys, R. Loo, O. Richard, H. Bender, N. Waldron, G. Brammertz, J. Dekoster, W. Wang, M. Seefeldt, M. Caymax, M. Heyns, "Selective area growth of high quality InP on Si (001) substrates ," Appl. Phys. Lett. 97, 121913-121913 (2010).
  15. G. Wang, M. Leys, R. Loo, O. Richard, H. Bender, G. Brammertz, N. Waldron, W. Wang, J. Dekoster, M. Caymax, M. Seefeldt, M. Heyns, "Selective area growth of InP and defect elimination on Si (001) substrates," J. Electrochem. Soc. 158, 645-650 (2011).
  16. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
  17. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Lončar, "Photonic crystal nanobeam lasers," Appl. Phys. Lett. 97, 051104-051104 (2010).
  18. G. Shambat, B. Ellis, J. Petykiewicz, M. A. Mayer, T. Sarmiento, "Nanobeam photonic crystal cavity light-emitting diodes," Appl. Phys. Lett. 99, 071105-071105 (2011).
  19. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681-681 (1946).
  20. J. Huang, S. Kim, J. Gardner, P. Regreny, C. Seassal, P. Postigo, A. Scherer, "Room temperature, continuous-wave coupled-cavity InAsP/InP photonic crystal laser with enhanced far-field emission directionality," Appl. Phys. Lett. 99, 091110-091110 (2011).
  21. H. Altug, D. Englund, J. Vuckovic, "Ultrafast photonic crystal nanocavity laser," Nat. Phys. 2, 484-488 (2006).
  22. T. Yoshie, M. Loncar, A. Scherer, Y. Qiu, "High frequency oscillation in photonic crystal nanolasers," Appl. Phys. Lett. 84, 3543-3545 (2004).
  23. H. Y. Ryu, M. Notomi, E. Kuramoti, T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
  24. J. M. Gérard, B. Gayral, "Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities," J. Lightw. Technol. 17, 2089-2095 (1999).
  25. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
  26. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. LonCar, "Photonic crystal nanobeam lasers," Appl. Phys. Lett. 97, 051104-051104 (2010).
  27. A. Larrue, C. Wilhelm, G. Vest, S. Combrié, A. D. Rossi, C. Soci, "Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission," Opt. Exp. 20, 7758-7770 (2012).
  28. B. Gunnar, Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 11, 2386-2396 (1991).
  29. T. F. Albrecht, "Transient four-wave mixing on (InGa) As/InP multiple quantum wells using a femtosecond optical parametric oscillator," Appl. Phys. Let. 63, 1945-1947 (1993).
  30. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  31. P. B. Deotare, M. W. McCutcheon, "High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106-121106 (2009).
  32. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, D. Peyrade, "Ultra-high q/v fabry-perot microcavity on soi substrate," Opt. Exp. 15, 16090-16096 (2007).
  33. K. Srinivasan, O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Exp. 10, 670-684 (2002).
  34. M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, M. Krames, "Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes," J. Appl. Phys. 87, 3497-3497 (2000).
  35. E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, M. A. Koza, "Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces," Appl. Phys. Lett. 60, 371-373 (1992).
  36. G. Brammertz, M. Heyns, M. Meuris, M. Caymax, D. I. Jiang, Y. Mols, S. Degroote, M. Leys, G. Borghs, "Surface recombination velocity in GaAs and In0.15Ga0.85As thin films," Appl. Phys. Lett. 90, 134102-134102 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited