OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 1 — Jan. 1, 2014
  • pp: 107–114

QCSE Tuned Embedded Ring Modulator

Viswas Sadasivan and Utpal Das

Journal of Lightwave Technology, Vol. 32, Issue 1, pp. 107-114 (2014)

View Full Text Article

Acrobat PDF (4235 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A micro embedded ring resonator modulator using quantum confined stark effect (QCSE) has been modeled and studied in this paper. Semi analytical design methods for various components like bend, coupler, and the whole embedded ring have been used here. Time domain and frequency domain analysis methods have been developed and studied. Using these methods a 50 Gbps, 11 dB extinction ratio, 5 μm outer radius embedded ring, QCSE tuned optical modulator design has been proposed.

© 2013 IEEE

Viswas Sadasivan and Utpal Das, "QCSE Tuned Embedded Ring Modulator," J. Lightwave Technol. 32, 107-114 (2014)

Sort:  Year  |  Journal  |  Reset


  1. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, "GaAs microcavity channel-dropping filter based on a race-rrack resonator," IEEE Photon. Technol. Lett. 11, 1620-1622 (1999).
  2. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
  3. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, P. T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 6524-6540 (2002).
  4. M. F. Morichetti, M. Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides," J. Opt. Soc. Amer. B 25, C87 -C97 (2008).
  5. B. E. Little, "Microring resonator channel dropping filters," J. Lightw. Tech. 15, 998 -1005 (1997).
  6. M. S. Nawrocka, T. Liu, X. Wang, R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range ," Appl. Phys. Lett. 89, 1-3 (2006).
  7. L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, "Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators," Opt. Exp. 19, 6524-6540 (2011).
  8. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, " 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Exp. 15, 430-436 (2007).
  9. I.-L. Gheorma, R. M. Osgood, Jr."Fundamental limitations of optical resonator based high-speed EO modulators ," IEEE Photon. Technol. Lett. 14, 795-797 (2002).
  10. R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, P.-T. Ho, "A tunable GaInAsP–InP optical microring notch filter," IEEE Photon. Technol. Lett. 16, 467-469 (2004).
  11. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photon. Technol. Lett. 14, 483-485 (2002 ).
  12. W. D. Sacher, J. K. S. Poon, "Dynamics of microring resonator modulators," Opt. Exp. 16, 15741-15753 (2008).
  13. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner, "Embedded ring resonators for microphotonic applications," Opt. Lett. 33, 1978-1980 (2008 ).
  14. P. Bhattacharya, Semiconductor Optoelectronic Devices (PHI, 2009).
  15. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).
  16. K. Okamoto, Fundamentals of Optical Waveguides (Academic , 2006).
  17. P. Lusse, P. Stuwe, J. Schule, H.-G. Unger, "Analysis of vectorial mode fields in optical waveguides by a new finite difference method," J. Lightw. Technol. 12, 487-494 (1994 ).
  18. H. Kogelnik, Theory of dielectric waveguides”, Guided-Wave Optoelectronics (Springer-Verlag, 1988) pp. 7- 88.
  19. E. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2103- 2132 (1969).
  20. K. R. Hiremath, "Analytic approach to dielectric optical bent slab waveguides," J. Opt. Soc. Amer. A 26, 2321-2326 (2004).
  21. D. Marcuse, "Bending losses of the asymmetric slab waveguide," Bell Syst. Tech. J. 50, 2103 -2132 (1971).
  22. K. Hiremath, “Modeling of 2D cylindrical integrated optical microresonators,” M.Sc. Thesis, Univ. of Twente, Enschede, The Netherlands, 2003..
  23. A. Arbabi, Y. M. Kang, L. L. Goddard, "Cylindrical coordinates coupled mode theory," IEEE J. Quantum Electron. 46, 1769-1774 (2010 ).
  24. K. Oda, N. Takato, H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightw. Technol. 9, 728-736 (1991).
  25. A. J Moseley, D. J. Robbins, A. C. Marshall, M. Q. Kearley, J. I. Davies, "Quantum confined Stark effect in InGaAs/InP single quantum wells investigated by photocurrent spectroscopy," Semicond. Sci. Technol. 4, (1989).
  26. T. Bhowmick, U. Das, " Integrated MQW intermixed InGaAsP/InP waveguide photodiodes," Opt. Quant. Electron. 42, 109-120 (2010 ).
  27. R. E. Nahory, M. A. Pollack, W. D. Johnston, R. L. Barns, "Band gap versus composition and demonstration of Vegard's law for In $_1{-}x$ Ga $_{x}$ As $_{y}$ P $_1{-}y$ lattice matched to InP," Appl. Phys. Lett. 33, 659-661 (1978).
  28. Broberg, S. Lindgren, "Refractive-index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region ," J. Appl. Phys. 55, 3376-3381 (1984).
  29. B. R. Bennett, R. A. Soref, J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26 , 113-122 (1990).
  30. M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions (Applied Mathematics Series 55),” National Bureau of Standards, Washington, DC, USA, 1964..
  31. V. Barve, U. Das, " Design of a grating-assisted lateral directional coupler by impurity-induced quantum-well intermixing of InGaAs/GaAs ," J. Lightw. Tech. 25, 2448-2455 (2007).
  32. R. K. Sonkar, U. Das, " Quantum well intermixed waveguide grating," Opt. Quantum Electron. 42, 631-643 (2011).
  33. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Series in materials for Electronics and Optoelectronic Applications) (Wiley, 2005).
  34. I. Bar Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, B. I. Miller, "Quantum-confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy," Appl. Phy. Lett. 50, 1010-1012 (1987).
  35. M. Hammer, K. R. Hiremath, R. Stoffer, "Analytical approaches to the description of optical microresonator devices," Proc. Microresonators Building Blocks VLSI Photon. (2003) pp. 48-71.
  36. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, W. Freude, "Radiation modes and roughness loss in high index-contrast waveguides ," IEEE J. Sel. Topics Quantum Electron. 12, 1306-1321 ( 2006).
  37. D. Rafizadeh, J. P. Zhang, R. C. Tiberio, S. T. Ho, "Propagation loss measurements in semiconductor microcavity ring and disk resonators ," J. Lightw. Tech. 16, 1308-1314 (1998).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited