QCSE Tuned Embedded Ring Modulator
Journal of Lightwave Technology, Vol. 32, Issue 1, pp. 107114 (2014)
Acrobat PDF (4235 KB)
Abstract
A micro embedded ring resonator modulator using quantum confined stark effect (QCSE) has been modeled and studied in this paper. Semi analytical design methods for various components like bend, coupler, and the whole embedded ring have been used here. Time domain and frequency domain analysis methods have been developed and studied. Using these methods a 50 Gbps, 11 dB extinction ratio, 5 μm outer radius embedded ring, QCSE tuned optical modulator design has been proposed.
© 2013 IEEE
Citation
Viswas Sadasivan and Utpal Das, "QCSE Tuned Embedded Ring Modulator," J. Lightwave Technol. 32, 107114 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt321107
Sort: Year  Journal  Reset
References
 M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, "GaAs microcavity channeldropping filter based on a racerrack resonator," IEEE Photon. Technol. Lett. 11, 16201622 (1999).
 Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, "Micrometrescale silicon electrooptic modulator," Nature 435, 325327 (2005).
 V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover, P. T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 65246540 (2002).
 M. F. Morichetti, M. Martinelli, "Fourwave mixing and wavelength conversion in coupledresonator optical waveguides," J. Opt. Soc. Amer. B 25, C87 C97 (2008).
 B. E. Little, "Microring resonator channel dropping filters," J. Lightw. Tech. 15, 998 1005 (1997).
 M. S. Nawrocka, T. Liu, X. Wang, R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range ," Appl. Phys. Lett. 89, 13 (2006).
 L. Zhang, R. Ji, Y. Tian, L. Yang, P. Zhou, Y. Lu, "Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators," Opt. Exp. 19, 65246540 (2011).
 Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, " 12.5 Gbit/s carrierinjectionbased silicon microring silicon modulators," Opt. Exp. 15, 430436 (2007).
 I.L. Gheorma, R. M. Osgood, Jr."Fundamental limitations of optical resonator based highspeed EO modulators ," IEEE Photon. Technol. Lett. 14, 795797 (2002).
 R. Grover, T. A. Ibrahim, S. Kanakaraju, L. Lucas, L. C. Calhoun, P.T. Ho, "A tunable GaInAsP–InP optical microring notch filter," IEEE Photon. Technol. Lett. 16, 467469 (2004).
 Yariv, "Critical coupling and its control in optical waveguidering resonator systems," IEEE Photon. Technol. Lett. 14, 483485 (2002 ).
 W. D. Sacher, J. K. S. Poon, "Dynamics of microring resonator modulators," Opt. Exp. 16, 1574115753 (2008).
 L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, A. E. Willner, "Embedded ring resonators for microphotonic applications," Opt. Lett. 33, 19781980 (2008 ).
 P. Bhattacharya, Semiconductor Optoelectronic Devices (PHI, 2009).
 Taflove, S. C. Hagness, Computational Electrodynamics: The FiniteDifference TimeDomain Method (Artech House, 2000).
 K. Okamoto, Fundamentals of Optical Waveguides (Academic , 2006).
 P. Lusse, P. Stuwe, J. Schule, H.G. Unger, "Analysis of vectorial mode fields in optical waveguides by a new finite difference method," J. Lightw. Technol. 12, 487494 (1994 ).
 H. Kogelnik, Theory of dielectric waveguides”, GuidedWave Optoelectronics (SpringerVerlag, 1988) pp. 7 88.
 E. Marcatili, "Bends in optical dielectric guides," Bell Syst. Tech. J. 48, 2103 2132 (1969).
 K. R. Hiremath, "Analytic approach to dielectric optical bent slab waveguides," J. Opt. Soc. Amer. A 26, 23212326 (2004).
 D. Marcuse, "Bending losses of the asymmetric slab waveguide," Bell Syst. Tech. J. 50, 2103 2132 (1971).
 K. Hiremath, “Modeling of 2D cylindrical integrated optical microresonators,” M.Sc. Thesis, Univ. of Twente, Enschede, The Netherlands, 2003..
 A. Arbabi, Y. M. Kang, L. L. Goddard, "Cylindrical coordinates coupled mode theory," IEEE J. Quantum Electron. 46, 17691774 (2010 ).
 K. Oda, N. Takato, H. Toba, "A wideFSR waveguide doublering resonator for optical FDM transmission systems," J. Lightw. Technol. 9, 728736 (1991).
 A. J Moseley, D. J. Robbins, A. C. Marshall, M. Q. Kearley, J. I. Davies, "Quantum confined Stark effect in InGaAs/InP single quantum wells investigated by photocurrent spectroscopy," Semicond. Sci. Technol. 4, (1989).
 T. Bhowmick, U. Das, " Integrated MQW intermixed InGaAsP/InP waveguide photodiodes," Opt. Quant. Electron. 42, 109120 (2010 ).

R. E. Nahory, M. A. Pollack, W. D. Johnston, R. L. Barns, "Band gap versus composition and demonstration of Vegard's law for
In
$_1{}x$ $_{x}$ $_{y}$ $_1{}y$  Broberg, S. Lindgren, "Refractiveindex of In1xGaxAsyP1y layers and InP in the transparent wavelength region ," J. Appl. Phys. 55, 33763381 (1984).
 B. R. Bennett, R. A. Soref, J. A. Del Alamo, "Carrierinduced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26 , 113122 (1990).
 M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions (Applied Mathematics Series 55),” National Bureau of Standards, Washington, DC, USA, 1964..
 V. Barve, U. Das, " Design of a gratingassisted lateral directional coupler by impurityinduced quantumwell intermixing of InGaAs/GaAs ," J. Lightw. Tech. 25, 24482455 (2007).
 R. K. Sonkar, U. Das, " Quantum well intermixed waveguide grating," Opt. Quantum Electron. 42, 631643 (2011).
 S. Adachi, Properties of GroupIV, IIIV and IIVI Semiconductors (Series in materials for Electronics and Optoelectronic Applications) (Wiley, 2005).
 I. Bar Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, B. I. Miller, "Quantumconfined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy," Appl. Phy. Lett. 50, 10101012 (1987).
 M. Hammer, K. R. Hiremath, R. Stoffer, "Analytical approaches to the description of optical microresonator devices," Proc. Microresonators Building Blocks VLSI Photon. (2003) pp. 4871.
 C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, W. Freude, "Radiation modes and roughness loss in high indexcontrast waveguides ," IEEE J. Sel. Topics Quantum Electron. 12, 13061321 ( 2006).
 D. Rafizadeh, J. P. Zhang, R. C. Tiberio, S. T. Ho, "Propagation loss measurements in semiconductor microcavity ring and disk resonators ," J. Lightw. Tech. 16, 13081314 (1998).
Cited By 
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's CitedBy Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article  Next Article »
OSA is a member of CrossRef.