OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 1 — Jan. 1, 2014
  • pp: 152–162

Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers

Marcelo A. Soto, Xabier Angulo-Vinuesa, Sonia Martin-Lopez, Sang-Hoon Chin, Juan Diego Ania-Castañon, Pedro Corredera, Etienne Rochat, Miguel Gonzalez-Herraez, and Luc Thévenaz

Journal of Lightwave Technology, Vol. 32, Issue 1, pp. 152-162 (2014)


View Full Text Article

Acrobat PDF (609 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The real remoteness of a distributed optical fiber sensor based on Brillouin optical time-domain analysis is considerably extended in this paper using seeded second-order Raman amplification and optical pulse coding. The presented analysis and the experimental results demonstrate that a proper optimization of both methods combined with a well-equalized two-sideband probe wave provide a suitable solution to enhance the signal-to-noise ratio of the measurements when an ultra-long sensing fiber is used. In particular, the implemented system is based on an extended optical fiber length, in which half of the fiber is used for sensing purposes, and the other half is used to carry the optical signals to the most distant sensing point, providing also a long fiber for distributed Raman amplification. Power levels of all signals launched into the fiber are properly optimized in order to avoid nonlinear effects, pump depletion, and especially any power imbalance between the two sidebands of the probe wave. This last issue turns out to be extremely important in ultra-long Brillouin sensing to provide strong robustness of the system against pump depletion. This way, by employing a 240 km-long optical fiber-loop, sensing from the interrogation unit up to a 120 km remote position (i.e., corresponding to the real sensing distance away from the sensor unit) is experimentally demonstrated with a spatial resolution of 5 m. Furthermore, this implementation requires no powered element in the whole 240 km fiber loop, providing considerable advantages in situations where the sensing cable crosses large unmanned areas.

© 2013 IEEE

Citation
Marcelo A. Soto, Xabier Angulo-Vinuesa, Sonia Martin-Lopez, Sang-Hoon Chin, Juan Diego Ania-Castañon, Pedro Corredera, Etienne Rochat, Miguel Gonzalez-Herraez, and Luc Thévenaz, "Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers," J. Lightwave Technol. 32, 152-162 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-1-152


Sort:  Year  |  Journal  |  Reset

References

  1. T. Horiguchi, T. Kurashima, M. Tateda, "A technique to measure distributed strain in optical fibers," IEEE Photon. Technol. Lett. 2, 352-354 (1990).
  2. T. Kurashima, T. Horiguchi, M. Tateda, "Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers," Opt. Lett. 15, 1038-1040 (1990).
  3. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightw. Technol. 13, 1296 -1302 (1995).
  4. M. Niklès, L. Thévenaz, P. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett. 21, 758-760 (1996).
  5. Q. Cui, S. Pamukcu, A. Lin, W. Xiao, D. Herr, J. Toulouse, M. Pervizpour, "Distributed temperature sensing system based on rayleigh scattering BOTDA," IEEE Sensors J. 11, 399 -403 (2011).
  6. X. Zhang, J. Hu, Y. Zhang, "A hybrid single-end-access BOTDA and COTDR sensing system using heterodyne detection," J. Lightw. Technol. 31, 1954-1959 (2013).
  7. Y. Dong, L. Chen, X. Bao, "Extending the sensing range of brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs," J. Lightw. Technol. 30, 1161 -1167 (2012).
  8. M. A. Soto, G. Bolognini, F. Di Pasquale, "Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification," Opt. Lett. 36, 232-234 (2011).
  9. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J. D. Ania-Castanon, L. Thevenaz, M. Gonzalez-Herraez, "Raman assisted brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 °C uncertainty," J. Lightw. Technol. 30, 1060 -1065 (Apr. 2012).
  10. S. Martin-Lopez, "Brillouin optical time-domain analysis assisted by second-order Raman amplification," Opt. Exp. 18, 18769-18778 (2010).
  11. M. A. Soto, G. Bolognini, F. Di Pasquale, "Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification," Opt. Exp. 19, 4444-4457 (2011).
  12. L. Thévenaz, S. F. Mafang, J. Lin, "Effect of pulse depletion in a Brillouin optical time-domain analysis system," Opt. Exp. 21 , 14017-14035 ( 2013).
  13. D. M. Nguyen, "Sensitivity enhancement in long-range distributed Brillouin fiber sensor using an anti-Stokes single-sideband probe and a bidirectional EDFA," Proc. Photon. Global Conf. (2012) pp. 1 -4.
  14. S. Faralli, G. Bolognini, G. Sacchi, S. Sugliani, F. Di Pasquale, "Bidirectional higher order cascaded Raman amplification benefits for 10-Gb/s WDM unrepeated transmission systems," J. Lightw. Technol. 23, 2427-2433 (2005 ).
  15. S. Faralli, G. Bolognini, M. A. Andrade, F. Di Pasquale, "Unrepeated WDM transmission systems based on advanced first-order and higher order Raman-copumping technologies," J. Lightw. Technol. 25 , 3519-3527 (2007).
  16. M. D. Jones, "Using simplex codes to improve OTDR sensitivity," IEEE Photon. Technol. Lett. 5, 822-824 (1993).
  17. M. A. Soto, G. Bolognini, F. Di Pasquale, L. Thévenaz, "Long-range brillouin optical time-domain analysis sensor employing pulse coding techniques," Meas. Sci. Technol. 21, 094024 (2010).
  18. X.-H. Jia, Y.-J. Rao, K. Deng, Z.-X. Yang, L. Chang, C. Zhang, Z.-L. Ran, "Experimental demonstration on 2.5-m spatial resolution and 1 °C temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding," IEEE Photon. Technol. Lett. 23, 435-437 (2011).
  19. M. A. Soto, G. Bolognini, F. Di Pasquale, "Simplex-coded BOTDA sensor over 120 km SMF with 1 m spatial resolution assisted by optimized bidirectional Raman amplification," IEEE Photon. Technol. Lett. 24, 1823-1826 (2012).
  20. S. F. Mafang, L. Thévenaz, "Impact of Raman scattering and modulation instability on the performances of brillouin sensors ," 21st Int. Conf. Opt. Fiber Sensors presented at the OttawaCanada (2011).
  21. C. R. S. Fludger, V. Handerek, R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers," J. Lightw. Technol. 19, 1140-1148 (2001).
  22. M. A. Soto, G. Bolognini, F. Di Pasquale, "Analysis of pulse modulation format in coded BOTDA sensors," Opt. Exp. 18, 14878-14892 (2010).
  23. M. Niklès, L. Thévenaz, P. A. Robert, "Simple distributed fiber sensor based on brillouin gain spectrum analysis," Opt. Exp. 21, 758-760 (1996).
  24. S. M. Foaleng, F. Rodríguez, S. Martin Lopez, M. González Herráez, L. Thévenaz, "Detrimental effect of self-phase modulation on the performance of brillouin distributed fiber sensors," Opt. Lett. 36, 97-99 (2011).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited