OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 1 — Jan. 1, 2014
  • pp: 20–26

Vertical-Cavity Surface-Emitting Laser With Cholesteric Liquid Crystal Overlay

Krassimir Panajotov, Maciej Dems, Carlos Belmonte, Hugo Thienpont, Yi Xie, Jeroen Beeckman, and Kristiaan Neyts

Journal of Lightwave Technology, Vol. 32, Issue 1, pp. 20-26 (2014)

View Full Text Article

Acrobat PDF (1815 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We study theoretically the spectral and polarization threshold characteristics of vertical-cavity surface-emitting lasers with an overlay of cholesteric liquid crystal (CLC-VCSELs). Due to the existence of CLC band gap for circularly polarized (CP) light the polarization state of the resonant modes in the compound system evolves from linear (LP) inside the VCSEL to elliptical and circular (CP) inside the CLC. As a result, the output mirror reflectivity is increased and CLC-VCSEL threshold gain is decreased. We elucidate the transition from LP to CP state of the generated light by studying the role of the CLC thickness and the top distributed Bragg reflector reflectivity. This transition takes place for 5–6 $\mu$ m thick CLC and is not gradual but happens in an oscillatory fashion. When the CLC thickness is fixed and the VCSEL top mirror reflectivity is decreased a profound gradual red shift of the resonant mode wavelength and increase of threshold gain are observed.

© 2013 IEEE

Krassimir Panajotov, Maciej Dems, Carlos Belmonte, Hugo Thienpont, Yi Xie, Jeroen Beeckman, and Kristiaan Neyts, "Vertical-Cavity Surface-Emitting Laser With Cholesteric Liquid Crystal Overlay," J. Lightwave Technol. 32, 20-26 (2014)

Sort:  Year  |  Journal  |  Reset


  1. C. Chang-Hasnain, J. Harbison, G. Hasnain, A. Von Lehmen, L. Florez, N. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1402- 1409 (1991).
  2. K. D. Choquette, R. P. Schneider, K. L. Lear, R. E. Leibenguth, "Gain-dependent polarization properties of vertical-cavity lasers," IEEE J. Sel. Topics Quantum Electron. 1 , 661-666 (1995).
  3. M. San Miguel, Q. Feng, J. V. Moloney, "Light-polarization dynamics in surface-emitting semiconductor lasers," Phys. Rev. A 52, 1728-1739 (1995).
  4. J. M. Martin-Regalado, F. Prati, M. S. Miguel, N. B. Abraham, "Polarization properties of vertical cavity surface-emitting lasers," IEEE J. Quantum Electron. 33, 765-783 (1997).
  5. A. Valle, K. A. Shore, L. Pesquera, "Polarization selection in birefringent vertical-cavity surface emitting lasers," J. Lightw. Technol. 14, 2062-2068 (1996).
  6. G. Verschaffelt, K. Panajotov, J. Albert, B. Nagler, M. Peeters, J. Danckaert, I. Veretennicoff, H. Thienpont, "Polarization switching in vertical-cavity surface-emitting lasers: From experimental observation to applications," Opto-Electron. Rev. 9, 257-268 (2001).
  7. K. Panajotov, F. Prati, VCSELs (Springer Series in Optical Sciences), R. Michalzik Ed., (Springer-Verlag, 2012 ) pp. 181-231.
  8. S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, K. Kojima, " High frequency polarization self-modulation in vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 63, 3545-3547 (1993).
  9. K. Panajotov, M. Sciamanna, M. Arizaleta, H. Thienpont, "Optical feedback in vertical-cavity surface-emitting lasers," IEEE J. Sel. Topics Quantum Electron. 19 , 1700312 ( 2013).
  10. M. Arteaga, M. Valencia, M. Sciamanna, H. Thienpont, M. López-Amo, K. Panajotov, " Experimental evidence of coherence resonance in a time-delayed bistable system," Phys. Rev. Lett. 99, (2007).
  11. Z. Pan, S. Jiang, M. Dagenais, R. Morgan, K. Kojima, M. Ason, R. Leibenguth, "Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 63, 2999-3001 (1993).
  12. I. Gatare, M. Sciamanna, M. Nizette, K. Panajotov, "Bifurcation to polarization switching and locking in vertical-cavity surface-emitting lasers with optical injection," Phys. Rev. A 76, 031803(R) (2007).
  13. B. S. Ryvkin, K. Panajotov, E. A. Avrutin, I. Veretennicoff, H. Thienpont, "Optical-injection-induced polarization switching in polarization-bistable VCSELs ," J. Appl. Phys. 96, 6002-6007 (2004).
  14. M. Sciamanna, A. Valle, P. Megret, M. Blondel, K. Panajotov, "Nonlinear polarization dynamics in directly modulated vertical-cavity surface-emitting lasers ," Phys. Rev. E 68, 016207 (2003).
  15. L. Olejniszak, K. Panajotov, H. Thienpont, M. Sciamanna, A. Mutig, F. Hopfer, D. Bimberg, "Polarization switching and polarization mode hopping in quantum dot vertical-cavity surface-emitting lasers," Opt. Exp. 19 , 2476-2484 (2011).
  16. M. Virte, K. Panajotov, H. Thienpont, M. Sciamanna, "Deterministic polarization chaos from a laser diode ," Nat. Photon. 7, 60-66 (2013).
  17. H. Ando, T. Sogawa, H. Gotoh, "Photon-spin controlled lasing oscillation in surface-emitting lasers," Appl. Phys. Lett. 73 , 566-568 (1998).
  18. M. Z. Maialle, M. H. Degani, "Electron-spin relaxation in p-type quantum wells via electron- hole exchange interaction: The effects of the valence-band spin mixing and of an applied longitudinal electric field ," Phys. Rev. B 55, 13771-13777 (1997).
  19. K. Panajotov, H. Thienpont, "Vertical-cavity surface-emitting laser with liquid crystal overlay," Opt. Exp. 19, 16749-16759 (2011).
  20. Y. Xie, W. Woestenborghs, J. Beeckman, K. Neyts, K. Panajotov, "VCSEL with photo-aligned liquid crystal overlay," IEEE Photon. Technol. Lett. 24, 1509-1512 (2012).
  21. I.-C. Khoo, Liquid Crystals (Wiley, 2007).
  22. S. M. Weiss, H. Ouyang, J. Zhang, P. M. Fauchet, "Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals," Opt. Exp. 13 , 1090-1097 (2005).
  23. V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, W. Lee, "Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell," Opt. Exp. 18, 1283-1288 (2010).
  24. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767 -2769 (2003).
  25. T. T. Larsen, A. Bjarklev, D. S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Exp. 11, 2589-2596 (2003).
  26. F. Du, Y.-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85 , 2181-2183 (2004).
  27. Y. Shimoda, M. Ozaki, K. Yoshino, "Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal," Appl. Phys. Lett. 79, 3627-3629 (2001).
  28. I.-C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, Y. Ma, "Liquid crystal tunable optical metamaterias ," IEEE J. Sel. Topics Quantum Electron. 16, 410-417 ( 2010).
  29. V. Verbrugge, J.-L. de Bougrenet de la Tocnaye, L. Dupont, " C-band wavelength-tunable vertical-cavity laser using a nano polymer dispersed liquid crystal material ," Opt. Commun. 215, 353-359 (2003).
  30. O. Castany, L. Dupont, C. Paranthoen, C. Levallois, A. Le Corre, and S. Loualiche, “Liquid crystal micro-cells for tunable VCSELs,” presented at the Journes Nationales sur les Technologies Mergentes, Palaiseau, France, Nov. 2010.
  31. V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
  32. L. Penninck, J. Beeckman, P. De Visschere, K. Neyts, "Light emission from dye-doped cholesteric liquid crystals at oblique angles: Simulation and experiment," Phys. Rev. E 85, 041702 (2012).
  33. K. Panajotov, Y. Xie, M. Dems, C. Belmonte, H. Thienpont, J. Beeckman, K. Neyts, "Vertical-cavity surface-emitting laser emitting circularly polarized light," Laser Phys. Lett. 10, 105003 (2013).
  34. D. W. Berreman, "Optics in stratified and anisotropic media: 4 $\times$ 4-matrix formulation," J. Opt. Soc. Amer. 62, 502-510 (1972).
  35. M. Dems, R. Kotynski, K. Panajotov, "Plane wave admittance method—A novel approach for determining the electromagnetic modes in photonic structures," Opt. Exp. 13, 3196-3207 (2005).
  36. M. Dems, T. Czyszanowski, R. Kotynski, K. Panajotov, Photonics Crystals: Physics and Technology (Springer-Verlag, 2008) pp. 253-277.
  37. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: A comparative theoretical and experimental study," IEEE J. Sel. Topics Quantum Electron. 11, 107-116 (2005).
  38. C. Chang-Hasnain, "Tunable VCSELs," IEEE J. Sel. Topics Quantum Electron. 6, 978-987 (2000).
  39. M. Maute, B. Kgel, G. Bhm, P. Meissner, M.-C. Amann, "MEMS-Tunable 1.55-mm VCSEL with extended tuning range incorporating a buried tunnel junction ," IEEE Photon. Technol. Lett. 18, 688-690 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited