OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 1 — Jan. 1, 2014
  • pp: 91–98

Design and Fabrication of Photonic Crystal Nano-Beam Resonator: Transmission Line Model

M. Miri, M. Sodagar, K. Mehrany, A. A. Eftekhar, A. Adibi, and B. Rashidian

Journal of Lightwave Technology, Vol. 32, Issue 1, pp. 91-98 (2014)

View Full Text Article

Acrobat PDF (595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We present a new method for modeling and design of photonic crystal nano-beam resonators (PCNBRs) based on cascaded transmission lines. The proposed model provides an accurate estimate of the PCNBRs properties such as resonance wavelength and quality factor $(Q)$ with much smaller computation cost as compared to the brute-force numerical methods. Furthermore, we have developed a straightforward technique for the design of high- $Q$ PCNBRs based on resonance modes with Gaussian electromagnetic field profiles. The results obtained by using the proposed transmission line model are compared against numerical and experimental results and the accuracy of the model is verified. The proposed model provides an insight to silicon cavity design and significantly reduces computational burden.

© 2013 IEEE

M. Miri, M. Sodagar, K. Mehrany, A. A. Eftekhar, A. Adibi, and B. Rashidian, "Design and Fabrication of Photonic Crystal Nano-Beam Resonator: Transmission Line Model," J. Lightwave Technol. 32, 91-98 (2014)

Sort:  Year  |  Journal  |  Reset


  1. M. Belotti, M. Galli, D. Gerace, L. Andreani, G. Guizzetti, A. MdZain, N. Johnson, M. Sorel, R. De La Rue, "All-optical switching in silicon-on-insulator photonic wire nano-cavities," Opt. Exp. 18, 1450-1461 (2010).
  2. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, M. Lipson, " Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes ," Opt. Exp. 15, 3140-3148 (2007).
  3. R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa, "Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot ," Appl. Phys. Lett. 98, 173104-1-173104-3 (2011).
  4. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, O. Painter, "A picogram- and nanometre-scale photonic-crystal optomechanical cavity," Nature 459, 550-555 (2009).
  5. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, M. Loncar, " High quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106-1-121106-3 (2009).
  6. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. Roh, M. Notomi, "Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings," Opt. Exp. 18, 15859-15869 (2010).
  7. J. D. Ryckman, S. M. Weiss, "Low mode volume slotted photonic crystal single nanobeam cavity," Appl. Phys. Lett. 101, 071104-1- 071104-3 (2012).
  8. M. Notomi, E. Kuramochi, H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Exp. 16, 11095-11102 (2008).
  9. M. McCutcheon, M. Loncar, " Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal," Opt. Exp. 16, 19136-19145 (2008).
  10. Q. Quan, P. B. Deotare, M. Loncar, "Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide," Appl. Phys. Lett. 96 , 203102-203104 (2010).
  11. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. Harris, J. Vuckovic, "Nanobeam photonic crystal cavity quantum dot laser," Opt. Exp. 18, 8781-8789 (2010).
  12. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, M. Loncar, "Photonic crystal nanobeam lasers," Appl. Phys. Lett. 97, 051104-051106 (2010).
  13. B. Ahn, J. Kang, M. Kim, J. Song, B. Min, K. Kim, Y. Lee, "One-dimensional parabolic-beam photonic crystal laser," Opt. Exp. 18, 5654-5660 (2010).
  14. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, E. Hadji, " Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide," New J. Phys. 8, 204 (2006).
  15. Q. Quan, M. Loncar, " Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities," Opt. Exp. 19, 18529-18542 (2011).
  16. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. Rodier, P. Lalanne, D. Peyrade, "Ultra-high Q/V Fabry–Perot microcavity on SOI substrate ," Opt. Exp. 15, 16090-16096 (2007).
  17. A. Md Zain, N. Johnson, M. Sorel, R. De La Rue, "Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)," Opt. Exp. 16 , 12084-12089 (2008).
  18. M. Miri, A. Khavasi, K. Mehrany, B. Rashidian, "Transmission-line model to design matching stage for light coupling into two-dimensional photonic crystals," Opt. Lett. 35, 115-117 (2010).
  19. M. A. Miri, A. Khavasi, M. Miri, K. Mehrany, "A transmission line resonator model for fast extraction of electromagnetic properties of cavities in two-dimensional photonic crystals," IEEE Photon. J. 2, 677-685 (2010).
  20. R. E. Collin, Foundation for Microwave Engineering (McGraw-Hill, 1992).
  21. Y. Akahane, T. Asano1, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
  22. K. Srinivasan, O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Exp. 10, 670-684 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited