OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 13 — Jul. 1, 2014
  • pp: 2303–2307

Fabrication, Characterization and Loss Analysis of Silicon Nanowaveguides

Chao Qiu, Zhen Sheng, Hao Li, Wei Liu, Le Li, Albert Pang, Aimin Wu, Xi Wang, Shichang Zou, and Fuwan Gan

Journal of Lightwave Technology, Vol. 32, Issue 13, pp. 2303-2307 (2014)

View Full Text Article

Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Low loss silicon waveguides are the key to the realization of high performance photonic integrated circuits. In this paper, fabrication, characterization and loss analysis of silicon nanowaveguides are presented. Silicon nanowaveguides are fabricated on silicon-on-insulator (SOI) wafers with 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology. To reduce the propagation loss, both photolithography and etching processes are optimized to make the waveguide sidewalls smooth. Propagation losses of 2.4 ± 0.2 and 0.59 ± 0.32 dB/cm are obtained at 1550 nm wavelength for TE and TM modes, respectively. A theoretical method is used to estimate the propagation losses for TE and TM modes. Scattering losses from both sidewalls and top/bottom surface are considered. The calculated results show that loss comes from sidewall roughness is the main source of propagation loss for TE mode while for TM mode, losses from both sidewall and top/bottom surface contribute comparably to the total propagation loss. The theoretically estimated propagation loss agrees well with the measured results.

© 2014 IEEE

Chao Qiu, Zhen Sheng, Hao Li, Wei Liu, Le Li, Albert Pang, Aimin Wu, Xi Wang, Shichang Zou, and Fuwan Gan, "Fabrication, Characterization and Loss Analysis of Silicon Nanowaveguides," J. Lightwave Technol. 32, 2303-2307 (2014)

Sort:  Year  |  Journal  |  Reset


  1. M. Lipson, "Guiding, modulating, and emitting light on silicon- challenges and opportunities," J. Lightw. Technol. 23, 4222-4238 (2005).
  2. D. Dai, Y. Shi, S. He, "Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration," Appl. Opt. 45, 4941-4946 ( 2006).
  3. Z. Sheng, D. Dai, S. He, "Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends," IEEE J. Sel. Topics Quantum Electron. 15, 1406-1412 (2009).
  4. S. Suzuki, M. Yanagisawa, Y. Hibino, K. Oda, "High-density integrated planar lightwave circuits using SiO2-GeO2 waveguides with a high refractive index difference," J. Lightw. Technol. 12, 790-796 (1994).
  5. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, M. Sorel, " Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist ," Electron. Lett. 44, 115-116 (2008).
  6. Y. A. Vlasov, S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Exp. 12, 1622-1631 (2004).
  7. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, H. Morita, "Microphotonics devices based on silicon microfabrication technology ," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 ( 2005).
  8. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, R. Baets, "Low loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328- 1330 (2004).
  9. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, D. L. Kwong, "Cascade wide-angle Y-junction 1 × 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator," Opt. Exp. 16, 21456-21461 ( 2008).
  10. A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, "Exploiting CMOS manufacturing to reduce tuning requirements for resonant optical devices," IEEE Photon. J. 3, 567-579 (2011).
  11. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. van Thourhout, P. Dumon, R. Baets, "Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography," J. Lightw. Technol. 27, 4076-4083 (2009).
  12. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, R. Baets, "Subnanometer line width uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology," IEEE J. Sel. Topics Quantum Electron. 16, 316-324 (2010).
  13. S. K. Selvaraja, G. Murdoch, A. Milenin, C. Delvaux, P. Ong, S. Pathak, D. Vermeulen, G. Sterckx, G. Winroth, P. Verheyen, G. Lepage, W. Bogaerts, J. Van Campenhout, P. Absil, " Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phase errors ," 17th Opto-Electron. Commun. Conf. presented at the BusanKorea (2012).
  14. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J. H. Schmid, E. Post, "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photon. Technol. Lett. 18, 2520 -2522 (2006).
  15. S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, "Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement," Opt. Commun. 284, 2141-2144 (2011).
  16. J. P. R. Lacey, F. P. Payne, "Radiation loss from planar wave-guides with random wall imperfections," Proc. Inst. Elect. Eng. J. (1990) pp. 282-288.
  17. F. Ladouceur, J. D. Love, T. J. Senden, "Effect of sidewall roughness in buried channel waveguides," Proc. Inst. Elect. Eng.-Optoelectronics ( 1994) pp. 242-248.
  18. F. Ladouceur, J. D. Love, T. J. Senden, "Measurement of surface roughness in buried channel waveguides," Electron. Lett. 28, 1321-1322 (1992).
  19. F. Ladouceur, "Roughness in homogeneity and integrated optics," IEEE J. Lightw. Technol. 15, 1020 -1025 (1997).
  20. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice-Hall , 1990) pp. 536-540.
  21. J. Canny, "A computational approach to edge detection," IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679-698 (1986).
  22. T. Barwicz, H. I. Smith, "Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices ," J. Vac. Sci. Technol. B 21, 2892 -2896 (2003).
  23. K. K. Lee, D. R. Lim, L. C. Kimerling, "Fabrication of ultralow-loss Si/SiO $_{2}$ waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
  24. F. Payne, J. Lacey, " A theoretical analysis of scattering loss from planar optical waveguides," Opt. Quantum Electron. 26, 977-986 (1994).
  25. K. K. Lee, D. R. Lim, H. C. Luan, A. Agrawal, J. Foresi, L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO $_{2}$ waveguide: Experiments and model ," Appl. Phys. Lett. 77, 1617 -1619 (2000).
  26. F. Grillot, L. Vivien, S. Laval, D. Pascal, E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photon. Technol. Lett. 16, 1661-1663 (2004).
  27. F. Grillot, L. Vivien, S. Laval, E. Cassan, "Propagation loss in single mode ultrasmall square silicon-on-insulator optical waveguides," IEEE J. Lightw. Technol. 24, 891-896 (2006 ).
  28. T. Barwicz, H. A. Haus, "Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides ," J. Lightw. Technol. 23, 2719 -2732 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited