OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 14 — Jul. 15, 2014
  • pp: 2486–2491

Extended Duration of Rubidium Vapor in Aluminosilicate Ceramic Coated Hypocycloidal Core Kagome HC-PCF

T. D. Bradley, J. Jouin, J. J. McFerran, P. Thomas, F. Gerome, and F. Benabid

Journal of Lightwave Technology, Vol. 32, Issue 14, pp. 2486-2491 (2014)

View Full Text Article

Acrobat PDF (469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Rubidium vapor is loaded into hypocycloidal core shaped Kagome hollow-core photonic crystal fiber (HC-PCF) with the wall of its inner core coated with aluminosilicate ceramic (sol-gel). We show that the presence of Rb vapor is maintained for a longer duration when compared to uncoated Kagome HC-PCF. Rb vapor within the hollow-core of a sol-gel coated Kagome HC-PCF is preserved for over 500 h after the source of Rb is halted. And Rb vapor is detected in the sol-gel coated HC-PCF for more than 80 h after the background Rb vapor signal is no longer observed.

© 2014 IEEE

Original Manuscript: November 6, 2013
Manuscript Accepted: April 4, 2014
Published: April 9, 2014

T. D. Bradley, J. Jouin, J. J. McFerran, P. Thomas, F. Gerome, and F. Benabid, "Extended Duration of Rubidium Vapor in Aluminosilicate Ceramic Coated Hypocycloidal Core Kagome HC-PCF," J. Lightwave Technol. 32, 2486-2491 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Hall, “Nobel lecture: defining and measuring optical frequencies”, Rev. Modern Phys., vol. 78, no. 4, pp. 1279–1295, 2006.
  2. D. Sheng, S. Li, N. Dural, and M. V Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells”, Phys. Rev. Lett., vol. 160802, pp. 1–5, 2013.
  3. E. P. Corsini, T. Karaulanov, M. Balabas, and D. Budker, “Hyperfine frequency shift and Zeeman relaxation in alkali-metal-vapor cells with antirelaxation alkene coating”, Phys. Rev. A, vol. 87, no. 2, pp. 022901–, 2013.
  4. Q. Bodart, S. Merlet, N. Malossi, F. P. Dos Santos, and P. Bouyer, “A cold atom pyramidal gravimeter with a single laser beam”, Appl. Phys. Lett., vol. 96, no. 134101, pp. 3–5, 2010.
  5. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock”, Appl. Phys. Lett., vol. 85, no. 9, pp. 1460–, 2004.
  6. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip”, Nature Photon., vol. 1, no. 6, pp. 331–335, 2007.
  7. B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, “Slow light on a chip via atomic quantum state control”, , vol. 4, pp. 5–8, 2010.
  8. S. Ghosh, A. Bhagwat, C. Renshaw, S. Goh, A. Gaeta, and B. Kirby, “Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber”, Phys. Rev. Lett., vol. 97, no. 2, pp. 023603–, 2006.
  9. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, “Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber”, Opt. Lett., vol. 32, no. 10, pp. 1323–1325, 2007.
  10. F. Benabid, and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber”, J. Modern Opt., vol. 58, no. 2, pp. 87–124, 2011.
  11. D. C. Vasconcelos, J. A. Carvalho, M. Mantel, and W. Vasconcelos, “Corrosion resistance of stainless steel coated with sol–gel silica”, J. Non-Crystalline Solids, vol. 273, no. 1–3, pp. 135–139, 2000.
  12. Y. Y. Wang, N. V Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber”, Opt. Lett., vol. 36, no. 5, pp. 669–671, 2011.
  13. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs”, Science, vol. 318, no. 5853, pp. 1118–1121, 2007.
  14. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression”, Opt. Lett., vol. 37, no. 15, pp. 3111–3113, 2012.
  15. T. D. Bradley, Y. Y. Wang, M. Alharbi, and B. Debord, “Hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications”, J. Lightw. Technol., vol. 31, no. 16, pp. 1–4, 2013.
  16. M. F. Hsu, G. D. Cates, I. Kominis, I. A. Aksay, and D. M. Dabbs, “Sol-gel coated glass cells for spin-exchange polarized 3He”, Appl. Phys. Lett., vol. 2069, no. 2000, pp. 1–4, 2010.
  17. M. Stephens, R. Rhodes, and C. Wieman, “Study of wall coatings for vapor-cell laser traps”, J. Appl. Phys., vol. 76, no. 6, pp. 3479–, 1994.
  18. S. L. Hietala, D. M. Smith, V. M. Hietala, and C. J. Brinker, “Closed porosity aluminosilicate for electronic packaging applications”, J. Mater. Res., vol. 8, no. 05, pp. 1122–1127, 2011.
  19. W. L. Robb, “Thin silicone membranes—Their permeation properties and some applications”, Ann. New York Academy Sci., vol. 146, pp. 119–137, 1968.
  20. G. A. Williams, and J. B. Ferguson, “The Diffusion of hydrogen and helium through silica glass and other glasses”, J. Amer. Chem. Soc., vol. 44, no. 10, pp. 2160–2167, 1922.
  21. F. J. Norton, “Permeation of gases through solids”, J. Appl. Phys., vol. 28, no. 1, pp. 34–, 1957.
  22. V. O. Altemose, “Helium diffusion through glass”, J. Appl. Phys., vol. 32, no. 7, pp. 1309–, 1961.
  23. A. Moliton, “Chapter: Electrostatics of dielectric materials, ”, Basic Electromagnetism and Materials, New York, NY, USA: Springer, 2007, pp. 39–86.
  24. E. Zaremba, and W. Kohn, “Van der Waals interaction between an atom and a solid surface”, Phys. Rev. B, vol. 13, no. 6, pp. 2270–2285, 1976.
  25. C. Di, G. Yu, Y. Liu, Y. Guo, X. Sun, J. Zheng, Y. Wen, Y. Wang, W. Wu, and D. Zhu, “Effect of dielectric layers on device stability of pentacene-based field-effect transistors”, Phys. Chemistry Chemical Phys., vol. 11, no. 33, pp. 7268–7273, 2009.
  26. A. Teiserskis, A. Zukova, Y. K. Gun’ko, S. Grudinkin, T. S. Perova, and R. A. Moore, “Investigation of alumina–silica films deposited by pulsed injection metal—Organic chemical vapour deposition”, Thin Solid Films, vol. 515, no. 4, pp. 1830–1834, 2006.
  27. J. C. Giuntini, J. M. Douillard, G. Maurin, S. Devautour-Vinot, A. Nicolas, and F. Henn, “Aluminosilicate surface energy and its evolution upon adsorption using dielectric relaxation spectroscopy”, Chem. Phys. Lett., vol. 423, no. 1--3, pp. 71–75, 2006.
  28. J. Obrecht, R. Wild, and E. Cornell, “Measuring electric fields from surface contaminants with neutral atoms”, Phys. Rev. A, vol. 75, no. 6, pp. 062903–, 2007.
  29. W. Noll, Chemistry and technology of silicones, New York, NY, USA: Academic Press, 1968.
  30. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces”, J. Colloid Interface Sci., vol. 137, no. 1, pp. 11–24, 1990.
  31. M. A. Bouchiat, and J. Brossel, “Relaxation of optically pumped Rb atoms on paraffin-coated walls”, Phys. Rev., vol. 147, no. 1, pp. 41–54, 1966.
  32. R. W. Schwartz, T. Schneller, and R. Waser, “Chemical solution deposition of electronic oxide films”, Comptes Rendus Chimie, vol. 7, no. 5, pp. 433–461, 2004.
  33. R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, and E. Fortunato, “Complementary metal oxide semiconductor technology with and on paper”, Adv. Mater. (Deerfield Beach, Fla.), vol. 23, no. 39, pp. 4491–4496, 2011.
  34. M. Petersen, “Laser-cooling of neutral Mercury and Laser-spectroscopy of the 1S0 - 3P0 transition”, Ph.D. Thesis, 2009.
  35. S. Mejri, J. J. Mcferran, L. Yi, Y. Le Coq, and S. Bize, “Ultraviolet laser spectroscopy of neutral mercury in a one-dimensional optical lattice”, Phys. Rev. A, vol. 84, no. 032507, pp. 1–10, 2011.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited