OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 15 — Aug. 1, 2014
  • pp: 2678–2689

Theoretical Considerations in Designing Ultra-High Speed All-Optical Clock Recovery Using Fiber Optical Parametric Amplifiers

Rasoul Damani and Jawad A. Salehi

Journal of Lightwave Technology, Vol. 32, Issue 15, pp. 2678-2689 (2014)


View Full Text Article

Acrobat PDF (463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, a new all-optical phase-locked loop (OPLL) in a TDM system is proposed and analyzed. The scheme relies on using fiber optical parametric amplifier (FOPA) device models and theories. In the proposed OPLL, the local clock pulse stream and the received data signal pulses are fed into the FOPA as its pump and amplified signals, respectively. The power of the resulting, relatively, strong idler signal depends on the phase difference between the local clock and the received data signal pulses, and it is used to reveal the OPLL's error signal. We characterize the mathematical structure of the proposed OPLL and identify its three intrinsic sources of phase noises namely, randomness of received data pulses, detector's shot noise, and the FOPA noises such as amplified spontaneous emission (ASE). The ASE noise is reflected in the FOPA's noise figure parametrically. However, the effects of the other two noise sources on the proposed OPLL performance are investigated, using the power spectral densities (PSDs) of the signals involved in the OPLL. Finally, the PSDs are used to obtain a mathematical expression for the OPLL's timing jitter. From the analytical results, our proposed OPLL benefits from the FOPA's inherent large bandwidth and exhibits a very low timing jitter, which is in the order of femtosecond, for an OTDM system with 80 Gbps data rate.

© 2014 IEEE

History
Original Manuscript: January 7, 2014
Manuscript Accepted: June 5, 2014
Published: July 8, 2014

Citation
Rasoul Damani and Jawad A. Salehi, "Theoretical Considerations in Designing Ultra-High Speed All-Optical Clock Recovery Using Fiber Optical Parametric Amplifiers," J. Lightwave Technol. 32, 2678-2689 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-15-2678


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5 μm self pulsating multielectrode DFB LD,” Electron. Lett., vol. 24, pp. 1426–1427, 1988.
  2. P. E. Barnsley, H. J. Wickes, G. E. Wickens, and D. M. Spirit, “All-optical clock recovery from 5 Gb/s RZ data using a self-pulsating 1.56 μm laser diode,” IEEE Photon. Technol. Lett., vol. 3, no. 10, pp. 942–945, 1991.
  3. M. Jinno, T. Matsumoto, and M. Koga, “All-optical timing extraction using an optical tank circuit,” IEEE Photon. Technol. Lett., vol. 2, no. 3, pp. 203–204, 1990.
  4. Z. Xiang, L. Chao, S. Ping, H. H. M. Shalaby, T. H. Cheng, and P. Ye, “A performance analysis of an all-optical clock extraction circuit based on Fabry-Perot filter,” J. Lightw. Technol., vol. 19, no. 5, pp. 603–613, 2001.
  5. S. Kawanishi and M. Saruwatari, “New-type phase-locked loop using travelling-wave laser-diode optical amplifier for very high-speed optical transmission,” Electron. Lett., vol. 24, pp. 1452–1453, 1988.
  6. S. Kawanishi and M. Saruwatari, “10 GHz timing extraction from randomly modulated optical pulses using phase-locked loop with travelling-wave laser-diode optical amplifier using optical gain modulation,” Electron. Lett., vol. 28, pp. 510–511, 1992.
  7. S. Kawanishi and M. Saruwatari, “Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser diode amplifier,” J. Lightw. Technol., vol. 11, no. 12, pp. 2123–2129, 1993.
  8. E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Technol. Lett., vol. 14, no. 3, pp. 396–398, 2002.
  9. H. Bulow, “Optoelectronic synchronisation scheme for ultrahigh-speed optical demultiplexer,” Electron. Lett., vol. 31, pp. 1937–1938, 1995.
  10. I. Phillips, A. Gloag, P. Kean, N. Doran, I. Bennion, and A. Ellis, “Simultaneous demultiplexing, data regeneration, and clock recovery with a single semiconductor optical amplifier-based nonlinear-optical loop mirror,” Opt. Lett., vol. 22, pp. 1326–1328, 1997.
  11. T. Yamamoto, L. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, “Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch based on semiconductor optical amplifier,” Electron. Lett., vol. 37, pp. 509–510, 2001.
  12. Y. M. Jhon, H. J. Ki, and S. H. Kim, “Clock recovery from 40 Gbps optical signal with optical phase-locked loop based on a terahertz optical asymmetric demultiplexer,” Opt. Commun., vol. 220, pp. 315–319, 2003.
  13. I. Phillips, A. Gloag, D. Moodie, N. Doran, I. Bennion, and A. Ellis, “Simultaneous demultiplexing and clock recovery using a single electroabsorption modulator in a novel bi-directional configuration,” Opt. Commun., vol. 150, pp. 101–105, 1998.
  14. I. Phillips, A. Gloag, D. Moodie, N. Doran, I. Bennion, and A. Ellis, “Drop and insert multiplexing with simultaneous clock recovery using an electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 10, no. 2, pp. 291–293, 1998.
  15. D. T. Tong, B. Mikkelsen, T. Nielsen, K. Dreyer, and J. Johnson, “Optoelectronic phase-locked loop with balanced photodetection for clock recovery in high-speed optical time-division-multiplexed systems,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1064–1066, 2000.
  16. D. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. Dreyer, and J. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett., vol. 36, pp. 1951–1952, 2000.
  17. I. Kang and M. Yan, “Simple setup for simultaneous optical clock recovery and ultra-short sampling pulse generation,” Electron. Lett., vol. 38, pp. 1199–1201, 2002.
  18. C. Boerner, C. Schubert, C. Schmidt, E. Hilliger, V. Marembert, J. Berger, “160 Gbit/s clock recovery with electro-optical PLL using bidirectionally operated electroabsorption modulator as phase comparator,” Electron. Lett., vol. 39, pp. 1071–1073, 2003.
  19. J. Turkiewicz, E. Tangdiongga, G. Khoe, and H. de Waardt, “Clock recovery and demultiplexing performance of 160-Gb/s OTDM field experiments,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1555–1557, 2004.
  20. H.-F. Chou, Z. Hu, J. E. Bowers, D. J. Blumenthal, K. Nishimura, R. Inohara, and M. Usami, “Simultaneous 160-Gb/s demultiplexing and clock recovery by utilizing microwave harmonic frequencies in a traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 608–610, 2004.
  21. E. S. Awad, P. Cho, N. Moulton, and J. Goldhar, “All-optical timing extraction with simultaneous optical demultiplexing from 40 Gb/s using a single electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 126–128, 2003.
  22. E. S. Awad, P. S. Cho, and J. Goldhar, “Simultaneous four-wave mixing and cross-absorption modulation inside a single EAM for high-speed optical demultiplexing and clock recovery,” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp. 1534–1536, 2005.
  23. E. S. Awad, P. S. Cho, N. Moulton, and J. Goldhar, “Subharmonic optical clock recovery from 160 Gb/s using time-dependent loss saturation inside a single electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 15, no. 12, pp. 1764–1766, 2003.
  24. E. S. Awad, P. S. Cho, C. Richardson, N. Moulton, and J. Goldhar, “Optical 3R regeneration using a single EAM for all-optical timing extraction with simultaneous reshaping and wavelength conversion,” IEEE Photon. Technol. Lett., vol. 14, no. 9, pp. 1378–1380, 2002.
  25. H. Dong, H. Sun, G. Zhu, Q. Wang, and N. Dutta, “Clock recovery using cascaded LiNbO3 modulator,” Opt. Exp., vol. 12, pp. 4751–4757, 2004.
  26. O. Kamatani, S. Kawanishi, and M. Saruwatari, “Prescaled 6.3 GHz clock recovery from 50 Gbit/s TDM optical signal with 50 GHz PLL using four-wave mixing in a travelling-wave laser diode optical amplifier,” Electron. Lett., vol. 30, pp. 807–809, 1994.
  27. O. Kamatani and S. Kawanishi, “Ultrahigh-speed clock recovery with phase lock loop based on four-wave mixing in a traveling-wave laser diode amplifier,” J. Lightw. Technol., vol. 14, no. 8, pp. 1757–1767, 1996.
  28. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 506–520, 2002.
  29. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, “Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,” JOSA B, vol. 20, pp. 1532–1537, 2003.
  30. B. P. Kuo, A. O. J. Wiberg, N. Alic, and S. Radic, “Self-phase tracked fiber-optical parametric sampling gate for 640-Gb/s OTDM de-multiplexing,” in Proc. 36th Eur. Conf. Exhib. Opt. Commun., 2010, pp. 1–3.
  31. A. O. J. Wiberg, C.-S. Bres, B. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Sampling of multiple 320-Gb/s channels by single parametric gate,” IEEE Photon. Technol. Lett., vol. 21, no. 12, pp. 796–798, 2009.
  32. P. A. Andrekson, “Picosecond optical sampling using four-wave mixing in fibre,” Electron. Lett., vol. 27, pp. 1440–1441, 1991.
  33. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightw. Technol., vol. 15, no. 11, pp. 2051–2058, 1997.
  34. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Petropoulos, P. Horak, “Dispersion controlled highly nonlinear fibers for all-optical processing at telecoms wavelengths,” Opt. Fiber Technol., vol. 16, pp. 378–391, 2010.
  35. G. Agrawal, Nonlinear Fiber Optics, 5th ed. Amsterdam, The Netherlands: Elsevier, 2012.
  36. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices. Cambridge, U.K.: Cambridge Univ. Press, 2008.
  37. A. J. Viterbi, Principles of Coherent Communication, vol. 14. New York, NY, USA: McGraw-Hill, 1966.
  38. F. M. Gardner, Phaselock Techniques. Hoboken, NJ, USA: Wiley, 2005.
  39. R. E. Best, Phase-Locked Loops: Design, Simulation and Applications. New York, NY, USA: McGraw-Hill, 2003.
  40. H. Zarkoob and J. A. Salehi, “Performance limits of optical clock recovery systems based on two-photon absorption detection scheme,” IEEE J. Sel. Topics Quantum Electron., vol. 14, no. 3, pp. 963–971, 2008.
  41. A. Durécu-Legrand, C. Simonneau, D. Bayart, A. Mussot, T. Sylvestre, E. Lantz, and H. Maillotte, “Impact of pump OSNR on noise figure for fiber-optical parametric amplifiers,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1178–1180, 2005.
  42. P. Kylemark, M. Karlsson, T. Torounidis, and P. A. Andrekson, “Noise statistics in fiber optical parametric amplifiers,” J. Lightw. Technol., vol. 25, no. 2, pp. 612–620, 2007.
  43. Z. Tong, A. Bogris, M. Karlsson, and P. A. Andrekson, “Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers,” Opt. Exp., vol. 18, pp. 2884–2893, 2010.
  44. R. M. Gagliardi and S. Karp, Optical Communications. NewYork, NY, USA: Wiley, 1995.
  45. E. Desurvire, “On the physical origin of the 3-dB noise figure limit in laser and parametric optical amplifiers,” Opt. Fiber Technol., vol. 5, pp. 40–61, 1999.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited