OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 15 — Aug. 1, 2014
  • pp: 2690–2698

Nonlinearity Cancellation in Fiber Optic Links Based on Frequency Referenced Carriers

N. Alic, E. Myslivets, E. Temprana, B. P.-P. Kuo, and S. Radic

Journal of Lightwave Technology, Vol. 32, Issue 15, pp. 2690-2698 (2014)


View Full Text Article

Acrobat PDF (541 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We study the limitations and their origins in the nonlinear effects mitigation in fiber-optic communication systems. The carrier frequencies uncertainty and their stochastic variations are identified as the major impeding factor for successful inter-channel nonlinear impairments management. Furthermore, the results clearly point out to the significant benefits of employing fully frequency referenced carriers in transmission, with frequency combs representing an immediately available solution. Finally, frequency referenced transmitters and/or receivers are shown as critical for availing longer reach at high spectral efficiencies in transmission.

© 2014 OAPA

History
Original Manuscript: March 5, 2014
Manuscript Accepted: May 23, 2014
Published: June 20, 2014

Citation
N. Alic, E. Myslivets, E. Temprana, B. P.-P. Kuo, and S. Radic, "Nonlinearity Cancellation in Fiber Optic Links Based on Frequency Referenced Carriers," J. Lightwave Technol. 32, 2690-2698 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-15-2690


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature, vol. 411, pp. 1027–1030, 2001.
  2. J. Tang, “The shannon channel capacity of dispersion-free nonlinear optical fiber transmission,” J. Lightw. Technol., vol. 19, no. 8, pp. 1104–1109, 2001.
  3. K. S. Turitsyn, S. A. Derevyanko, I. V. Yurkevich, and S. K. Turitsyn, “Information capacity of optical fiber channels with zero average dispersion,” Phys. Rev. Lett., vol. 91, no. 20, p. 203901, 2003.
  4. I. Djordjevic, B. Vasic, M. Ivkovic, and I. Gabitov, “Achievable information rates for high-speed long-haul optical transmission,” J. Lightw. Technol., vol. 23, no. 11, pp. 3755–3763, 2005.
  5. M. H. Taghavi, G. C. Papen, and P. H. Siegel, “On the multiuser capacity of WDM in a nonlinear optical fiber: Coherent communication,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 5008–5022, 2006.
  6. R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett., vol. 101, p. 163901, 2008.
  7. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.
  8. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightw. Technol., vol. 28, no. 4, pp. 423–433, 2010.
  9. E. Agrell and M. Karlsson, “Satellite constellations: Towards the nonlinear channel capacity,” presented at the IEEE Photonics Conf., Burlingame, CA, USA, 2012, Paper TuM1.
  10. S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelengthdivision-multiplexed high-power laser diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 7, pp. 3–16, 2001.
  11. S. Radic, “Forward, bi-directional and higher order Raman amplifiers,” in Raman Amplifiers for Telecommunications 1, vol. 90/1, M. Islam, Ed. New York, NY, USA: Springer, 2004.
  12. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE Sel. Topics Quantum Electron., vol. 8, no. 3, pp. 538–547, 2002.
  13. M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices. Cambridge, U.K.: Cambridge Univ. Press, 2008.
  14. L. F. Mollenauer and K. Smith, “Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain,” Opt. Lett., vol. 13, pp. 675–677, 1988.
  15. G. M. Carter, R. Mu, V. Grigoryan, P. Sinha, C. R. Menyuk, T. F. Carruthers, M. L. Dennis, and I. N. Duling, “20 Gb/s transmission of dispersion-managed solitons over 20,000 km,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 1999, Paper WC1.
  16. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Grüner-Nielsen, and T. Veng, “Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt. Lett., vol. 25, pp. 704–706, 2000.
  17. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightw. Technol., vol. 8, no. 10, pp. 1548–1557, 1990.
  18. R. A. Bergh, B. Culshaw, C. C. Cutler, H. C. Lefevre, and H. J. Shaw, “Source statistics and the Kerr effect in fiber-optic gyroscopes,” Opt. Lett., vol. 7, pp. 563–565, 1982.
  19. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 877–887, 2002.
  20. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 674–676, 2004.
  21. D. McGhan, M. O’Sullivan, C. Bontu, and K. Roberts, “Electronic dispersion compensation,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2006, Paper OWK1.
  22. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Exp., vol. 15, pp. 2120–2126, 2007.
  23. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightw. Technol., vol. 25, no. 8, pp. 2033–2043, 2007.
  24. S. L. Jansen, I. Morita, T. C. Schenk, and H. Tanaka, “Long-haul transmission of 16 × 52.5 Gbits/s polarization-division-multiplexed OFDM enabled by MIMO processing (Invited),” J. Opt. Netw., vol. 7, pp. 173–182, 2008.
  25. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightw. Technol., vol. 26, no. 1, pp. 196–203, 2008.
  26. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightw. Technol., vol. 26, no. 1, pp. 64–72, 2008.
  27. K. Roberts, M. O’Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightw. Technol., vol. 27, no. 16, pp. 3546–3559, 2009.
  28. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A. Napoli, and B. Lankl, “DSP for coherent single-carrier receivers,” J. Lightw. Technol., vol. 27, no. 16, pp. 3614–3622, 2009.
  29. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Pecham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightw. Technol., vol. 29, no. 4, pp. 373–377, 2011.
  30. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightw. Technol., vol. 29, no. 4, pp. 483–490, 2011.
  31. S. Chandrasekhar and X. Liu, “OFDM based superchannel transmission technology,” J. Lightw. Technol., vol. 30, no. 24, pp. 3816–3823, 2012.
  32. B. Marks, W. L. Kath, and S. K. Turitsyn, “Dispersion maps with optimized amplifier placement for wavelength-division-multiplexing,” presented at the Optical Fiber Communication Conf., Baltimore,  MD, USA, 2000, Paper WA7.
  33. G. Mohs, W. T. Anderson, and E. A. Golovchenko, “A new dispersion map for undersea optical communication systems,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2007, Paper JThA41.
  34. R. Bhamber, C. French, S. K. Turitsyn, V. Mezentsev, W. Forysiak, and J. H. B. Nijhof, “Lumped dispersion mapping and performance margins in existing SMF-DCF terrestrial links,” J. Opt. Netw., vol. 7, pp. 106–110, 2008.
  35. L. B. Du and A. J. Lowery, “Fiber nonlinearity compensation for CO-OFDM systems with periodic dispersion maps,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2009, Paper OTuO1.
  36. P. Harper, S. B. Alleston, W. Forysiak, and N. J. Doran, “10 Gbit/s dispersion-managed soliton transmission over 13,400 km in a weak, symmetric non-zero dispersion shifted fiber dispersion map,” presented at the Conf. on Laser Electro-Optics, San Francisco, CA, USA, 2001, Paper CTuM5.
  37. D. G. Foursa, Y. Cai, C. R. Davidson, A. Lucero, M. Mazurczyk, W. Patterson, O. Sinkin, W. Anderson, J.-X. Cai, G. Redington, M. Nissov, A. Pilipetskii, and N. S. Bergano, “Long-haul coherent QPSK transmission of 40 G channels with 120% spectral efficiency using increased linearity dispersion map with 100 km spans and EDFAs,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2010, Paper OTuD2.
  38. X. Li, F. Zhang, Z. Chen, and A. Xu, “Suppression of XPM and XPM-induced nonlinear phase noise for RZ-DPSK signals in 40 Gbit/s WDM transmission systems with optimum dispersion mapping,” Opt. Exp., vol. 15, pp. 18247–18252, 2007.
  39. Y. Frignac, J. Antona, and S. Bigo, “Enhanced analytical engineering rule for fast optimization of dispersion maps in 40 Gbit/s-based transmission systems,” presented at theOptical Fiber Communication Conf., Los Angeles, CA, USA, 2004, Paper TuN3.
  40. F. Zhang, C. A. Bunge, K. Petermann, and A. Richter, “Optimum dispersion mapping of single-channel 40 Gbit/s return-to-zero differential phase-shift keying transmission systems,” Opt. Exp., vol. 14, pp. 6613–6618, 2006.
  41. C. Fürst, C. Scheerer, G. Mohs, J.-P. Elbers, and C. Glingener, “Influence of the dispersion map on limitations due to cross-phase modulation in WDM multispan transmission systems,” presented at the Optical Fiber Communication Conf., Anaheim, CA, USA, 2001, Paper MF4.
  42. B. Zhu, L. Leng, L. E. Nelson, S. Stulz, T. N. Nielsen, and D. A. Fishman, “Experimental investigation of dispersion maps for 40 × 10 Gb/s transmission over 1600 km of fiber with 100-km spans employing distributed Raman amplification,” presented at theOptical Fiber Communication Conf., Anaheim, CA, USA, 2001, Paper TuN3.
  43. R.-J. Essiambre, G. Raybon, and B. Mikkelsen, “Pseudo linear transmission of high-speed TDM signals,” in Fibero Optic Telecommunication IVB, I. Kaminow, T. Li, Eds. San Diego, CA, USA: Academic Press, 2002.
  44. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightw. Technol., vol. 26, no. 20, pp. 3416–3425, 2008.
  45. E. Mateo, L. Zhu, and G. Li, “Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation,” Opt. Exp., vol. 16, no. 20, pp. 16124–16137, 2008.
  46. E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, “Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system,” IEEE Photon. Technol. Lett., vol. 19, no. 1, pp. 9–11, 2007.
  47. S. Oda, T. Tanimura, T. Hoshida, C. Ohshima, H. Nakashima, Z. Tao, and J. C. Rasmussen, “112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2009, Paper OThR6.
  48. L. Li, Z. Tao, L. Liu, W. Yan, S. Oda, T. Hoshida, and J. C. Rasmussen, “Nonlinear polarization crosstalk canceller for dual-polarization digital coherent receivers,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, 2010, Paper OWE3.
  49. T. Tanimura, T. Hoshida, T. Tanaka, L. Li, S. Oda, H. Nakashima, Z. Tao, and J. C. Rasmussen, “Semi-blind nonlinear equalization in coherent multi-span transmission system with inhomogeneous span parameters,” presented at theOptical Fiber Communication Conf., San Diego, CA, USA, 2010, Paper OMR6.
  50. L. B. Du and A. J. Lowery, “Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2011, Paper no. OWW2.
  51. D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett., vol. 23, no. 23, pp. 1838–1840, 2011.
  52. D. Rafique, M. Mussolin, J. Mårtensson, M. Forzati, J. K. Fischer, L. Molle, M. Nölle, C. Schubert, and A. D. Ellis, “Polarization multiplexed 16 QAM transmission employing modified digital back-propagation,” Opt. Exp., vol. 19, pp. B805–B810, 2011.
  53. D. Rafique and A.D. Ellis, “Impact of signal-ASE four-wave mixing on the effectiveness of digital back-propagation in 112 Gb/s PM-QPSK systems,” Opt. Exp., vol. 19, pp. 3449–3454, 2011.
  54. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Exp., vol. 19, pp. 5219–5224, 2011.
  55. D. Rafique and A. D. Ellis, “Nonlinearity compensation in multi-rate 28 Gbaud WDM systems employing optical and digital techniques under diverse link configurations,” Opt. Exp., vol. 19, pp. 16919–16926, 2011.
  56. L. Zhu and G. Li, “Nonlinearity compensation using dispersion-folded digital backward propagation,” Opt. Exp., vol. 20, no. 13, pp. 14362–14370, 2012.
  57. L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Exp., vol. 19, pp. 5953–5959, 2011.
  58. E. F. Mateo, X. Zhou, and G. Li, “Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems,” Opt. Exp., vol. 19, pp. 570–583, 2011.
  59. L. Zhu and G. Li, “Nonlinearity compensation using dispersion-folded digital backward propagation,” Opt. Exp., vol. 20, pp. 14362–14370, 2012.
  60. E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Exp., vol. 18, pp. 15144–15154, 2010.
  61. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” presented at the 37th Eur. Conf. Expo. on Optical Communications, Geneva, Switzerland, 2011, Paper Tu.3.A.2.
  62. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation efficient nonlinear equalizer based on correlated digital backpropagation,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2011, Paper OWW3.
  63. T. Tanimura, S. Oda, T. Hoshida, L. Li, Z. Tao, and J. C. Rasmussen, “Experimental characterization of nonlinearity mitigation by digital back propagation and nonlinear polarization crosstalk canceller under high PMD condition,” presented at theOptical Fiber Communication Conf., Los Angeles, CA, USA, 2011, Paper JWA020.
  64. Z. Tao, L. Dou, W. Yan, L. Li, T. Hoshida, and J. C. Rasmussen, “Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate,” J. Lightw. Technol., vol. 29, no. 17, pp. 2570–2576, 2011.
  65. G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Exp., vol. 20, pp. 14406–14418, 2012.
  66. H. Nakashima, T. Oyama, Y. Akiyama, S. Oda, L. Dou, Y. Fan, Z. Tao, T. Hoshida, and J. C. Rasmussen, “PMD and PDL tolerances of transmitter-side non-linear mitigation in 112 Gb/s DP-QPSK transmission,” presented at theEur. Conf. and Expo. on Optical Communications, Geneva, Switzerland, 2012, Paper We.3.C.5.
  67. K. Toyoda, Y. Koizumi, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Marked performance improvement of 256 QAM transmission using a digital back-propagation method,” Opt. Exp., vol. 20, pp. 19815–19821, 2012.
  68. L. Dou, Z. Tao, Y. Akiyama, S. Oda, Y. Fan, T. Oyama, H. Nakashima, T. Hoshida, and J. C. Rasmussen, “Real-time 112Gb/s DWDM coherent transmission with 40% extended reach by transmitter-side low-complexity nonlinear mitigation,” presented at the Eur. Conf. and Expo. on Optical Communications, Geneva, Switzerland, 2012, Paper Th.1.D.3.
  69. G. Shulkind and M. Nazarathy, “Nonlinear digital back propagation compensator for coherent optical OFDM based on factorizing the volterra series transfer function,” Opt. Exp., vol. 21, pp. 13145–13161, 2013.
  70. Y. Bao, Z. Li, J. Li, X. Feng, B. Guan, and G. Li, “Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion,” Opt. Exp., vol. 21, pp. 7354–7361, 2013.
  71. E. G. Turitsyna and S. K. Turitsyn, “Digital signal processing based on inverse scattering transform,” Opt. Lett., vol. 38, pp. 4186–4188, 2013.
  72. Y. Gao, J. C. Cartledge, A. S. Karar, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Exp., vol. 22, pp. 1209–1219, 2014.
  73. Y. Gao, A. S. Karar, J. C. Cartledge, S. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Simplified nonlinearity pre-compensation using a modified summation criteria and non-uniform power profile,” presented at the Optical Fiber Communication Conf., San Francisco, CA, USA, 2014, Paper Tu3A.6.
  74. N. Alic and S. Radic, “Optical frequency combs for telecom and datacom applications,” presented at the Optical Fiber Communication Conf., San Francisco, CA, USA, 2014, Paper W4E.4.
  75. B. P.-P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.
  76. E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Exp., vol. 20, pp. 3331–3344, 2012.
  77. V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightw. Technol., vol. 32, no. 4, pp. 840–846, 2014.
  78. B. P.-P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Wavelength multicasting via frequency comb generation in a bandwidth-enhanced fiber optical parametric mixer,” J. Lightw. Technol., vol. 29, no. 23, pp. 3515–3522, 2011.
  79. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Exp., vol. 20, pp. 17610–17619, 2012.
  80. E. Temprana, V. Ataie, B. P.-P. Kuo, E. Myslivets, N. Alic, and S. Radic, “Low-noise parametric frequency comb for continuous C-plus-L-band 16-QAM channels generation,” Opt. Exp., vol. 22, pp. 6822–6828, 2014.
  81. V. Ataie, E. Temprana, L. Liu, Y. Myslivets, P. P. Kuo, N. Alic, and S. Radic, “Flex-grid compatible ultra wide frequency comb source for 31.8 Tb/s coherent transmission of 1520 UDWDM channels,” presented at theOptical Fiber Communication Conf., San Francisco, CA, USA, 2014, Paper Th5B.7.
  82. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. San Diego, CA, USA: Academic Press, 1995.
  83. M. Saha and A. K. Sarma, “Solitary wave solutions and modulation instability analysis of the nonlinear Schrodinger equation with higher order dispersion and nonlinear terms,” Commun. Nonlinear Sci. Numer. Simulat., vol. 18, pp. 2420–2425, 2013.
  84. J. Yang and K. R. Akylas, “Continuous families of embedded solitons in the third order nonlinear schrodinger equation,” Stud. Appl. Math., vol. 111, pp. 359–375, 2003.
  85. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Nonlinear spectral management: Linearization of the lossless fiber channel,” Opt. Exp., vol. 21, pp. 24344–24367, 2013.
  86. C. J. McKinstrie and N. Alic, “Information efficiencies of parametric devices,” IEEE J. Sel. Topics Quantum Electron., vol. 18, no. 2, pp. 794–811, 2012.
  87. S. Zhang, E. Mateo, L. Xu, M. Huang, F. Yaman, Y. Shao, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “100 G upgrade over legacy submarine dispersion-managed fiber link using fiber nonlinearity compensation and maximum likelihood sequence estimation,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, 2012, Paper OTu2A.4.
  88. Y. Huang, E. Mateo, M. Sato, D. Qian, F. Yaman, T. Inoue, Y. Inada, S. Zhang, Y. Aono, T. Tajima, T. Ogata, and Y. Aoki, “Real-time transoceanic transmission of 1-Tb/s nyquist superchannel at 2.86-b/s/Hz spectral efficiency,” presented at the Asia Communications and Photonics Conf.,  Guangzhou, China, 2012, Paper PAF4C.2.
  89. T. Inoue, E. Mateo, F. Yaman, T. Wang, Y. Inada, T. Ogata, and Y. Aoki, “Low complexity nonlinearity compensation for 100 G DP-QPSK transmission over legacy NZ-DSF link with OOK channels,” presented at the Eur. Conf. and Expo. on Optical Communications, Amsterdam, Netherlands, 2012, Paper Mo.1.C.5.
  90. A. Hasegawa and T. Nyu, “Eigenvalue communication,” J. Lightw. Technol., vol. 11, no. 3, pp. 395–399, 1993.
  91. R. Courant and D. Hilbert, Methods of Mathematical Physics. New York, NY, USA: Willey, 1989.
  92. J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York, NY, USA: McGraw-Hill, 2007.
  93. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett., vol. 15, no. 23, pp. 1351–1353, 1990.
  94. (2014). [Online]. Available: http://www.emcore.com/wp-content/uploads/EMCORE-ITLA-High-Data-Rate-Application-Note.pdf
  95. (2014). [Online]. Available: http://cp.literature.agilent.com/litweb/pdf/5990–5512EN.pdf
  96. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423, 1948.
  97. M. Hirano, T. Haruna, Y. Tamura, T. Kawano, S. Ohnuki, Y. Yamamoto, Y. Koyano, and T. Sasaki, “Record low loss, record high FOM optical fiber with manufacturable process,” presented at theOptical Fiber Communication Conf., Anaheim, CA, USA, 2013, Paper PDP.A5.7.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited