OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 16 — Aug. 15, 2014
  • pp: 2703–2715

Dynamic and Adaptive Control Plane Solutions for Flexi-Grid Optical Networks Based on Stateful PCE

Raul Muñoz, Ramon Casellas, Ricard Vilalta, and Ricardo Martínez

Journal of Lightwave Technology, Vol. 32, Issue 16, pp. 2703-2715 (2014)


View Full Text Article

Acrobat PDF (1878 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Adaptive flexi-grid optical networks should be able to autonomously decide where and when to dynamically setup, reoptimize, and release elastic optical connections, in reaction to network state changes. A stateful path computation element (PCE) is a key element for the introduction of dynamics and adaptation in generalized multiprotocol label switching (GMPLS)-based distributed control plane for flexi-grid DWDM networks (e.g., global concurrent reoptimization, defragmentation, or elastic inverse-multiplexing), as well as for enabling the standardized deployment of the GMPLS control plane in the software defined network control architecture. First, this paper provides an overview of passive and active stateful PCE architectures for GMPLS-enabled flexi-grid DWDM networks. A passive stateful PCE allows for improved path computation considering not only the network state (TED) but also the global connection state label switched paths database (LSPDB), in comparison with a (stateless) PCE. However, it does not have direct control (modification, rerouting) of path reservations stored in the LSPDB. The lack of control of these label switched paths (LSPs) may result in the suboptimal performance. To this end, an active stateful PCE allows for optimal path computation considering the LSPDB for the control of the state (e.g., increase of LSP bandwidth, LSP rerouting) of the stored LSPs. More recently, an active stateful PCE architecture has also been proposed that exposes the capability of setting up and releasing new LSPs. It is known as active stateful PCE with instantiation capabilities. This paper presents the first prototype implementation and experimental evaluation of an active stateful PCE with instantiation capabilities for the GMPLS-controlled flexi-grid DWDM network of the ADRENALINE testbed.

© 2014 IEEE

History
Original Manuscript: January 31, 2014
Manuscript Accepted: June 14, 2014
Published: June 18, 2014

Citation
Raul Muñoz, Ramon Casellas, Ricard Vilalta, and Ricardo Martínez, "Dynamic and Adaptive Control Plane Solutions for Flexi-Grid Optical Networks Based on Stateful PCE," J. Lightwave Technol. 32, 2703-2715 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-16-2703


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo, “Elastic optical networking: A new dawn for the optical layer?” IEEE Commun. Mag., vol. 50, no. 2, pp. s12–s20, 2012.
  2. Spectral Grids for WDM Applications: DWDM Frequency Grid, ITU-T Recommendation G.694.1, 2012.
  3. M. S. Moreolo, J. Fàbrega, F. Vílchez, L. Nadal, V. López, and G. Junyent, “Experimental validation of an elastic low-complex OFDM-based BVT for flexi-grid metro networks,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 2013, pp. 1–3.
  4. N. Amaya, G. Zervas, B. Rahimzadeh Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 tb/s adaptive and gridless OXC supporting elastic 1000-fold bandwidth granularity,” in Proc. Eur. Conf. Exhib. Opt. Commun., 2011, pp. 1–3.
  5. R. Munoz, V. Lopez, R. Casellas, O. G. de Dios, F. Cugini, N. Sambo, A. D’Errico, O. Gerstel, D. King, S. Lopez-Buedo, P. Layec, A. Cimmino, R. Martinez, and R. Morro, “IDEALIST control and service management solutions for dynamic and adaptive flexi-grid DWDM networks,” in Proc. Future Netw. Mobile Summit, 2013, pp. 1–10.
  6. O. G. d. Dios, R. Casellas, F. Zhang, X. Fu, D. Ceccarelli, and I. Hussain, “Framework and requirements for GMPLS based control of flexi-grid DWDM networks,” IETF draft-ietf-ccamp-flexi-grid-fwk (work in progress), 2014.
  7. A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (PCE)-based architecture,” IETF RFC4655, 2006.
  8. J. P. Vasseur and J. L. Le Roux, (Eds.), “Path computation element (PCE) communication protocol (PCEP),” IETF RFC 5440, 2009.
  9. S. Seetharaman, “OpenFlow/SDN tutorial OFC/NFOEC,” in Proc. Opt. Fiber Commun. Conf. Expo./Nat. Fiber Opt. Eng. Conf, 2012, pp. 1–52.
  10. G. Goth, “Software-defined networking could shake up more than packets,” IEEE Internet Comput., vol. 15, no. 4, pp. 6–9, 2011.
  11. R. Munoz, R. Casellas, and R. Martínez, “Dynamic distributed spectrum allocation in GMPLS-controlled elastic optical networks,” in Proc. Eur. Conf. Exhib. Opt. Commun., 2011, pp. 1–3.
  12. R. Casellas, R. Muñoz, J. M. Fàbrega, M. S. Moreolo, R. Martínez, L. Liu, T. Tsuritani, and I. Morita, “GMPLS/PCE control of flexi-grid DWDM optical networks using CO-OFDM transmission [invited],” J. Opt. Commun. Netw., vol. 4, no. 11, pp. B1–B10, 2012.
  13. R. Muñoz, R. Casellas, R. Martínez, L. Liu, T. Tsuritani, and I. Morita, “Experimental evaluation of efficient routing and distributed spectrum allocation algorithms for GMPLS elastic networks,” Opt. Exp., vol. 20, no. 28, pp. 28 532–28 537, 2012.
  14. R. Casellas, R. Muñoz, J. M. Fabrega, M. S. Moreolo, R. Martinez, L. Liu, T. Tsuritani, and I. Morita, “Design and experimental validation of a GMPLS/PCE control plane for elastic CO-OFDM optical networks,” IEEE Sel. Areas Commun., vol. 31, no. 1, pp. 49–61, 2013.
  15. R. Muñoz, R. Casellas, and R. Martínez, “PCE: What is it, how does it work and what are its limitations? (Tutorial),” presented at the Opt. Fiber Commun. Conf. Expo./Nat. Fiber Opt. Eng. Conf., Anaheim, CA, USA, Mar. 17–21, 2013.
  16. E. Crabbe, J. Medved, I. Minei, and R. Varga, “PCEP extensions for stateful PCE,” IETF draft-ietf-pce-stateful-pce (work in progress), 2013.
  17. R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network configuration protocol (NETCONF),” IETF RFC 6241, 2011.
  18. M. Bjorklund, “YANG—A data modelling language for the network configuration protocol (NETCONF),” IETF RFC 6020, 2010.
  19. Y. Lee, J. L. Le Roux, D. King, and E. Oki, “Path computation element communication protocol (PCEP) requirements and protocol extensions in support of global concurrent optimization,” IETF RFC 5557, 2009.
  20. R. Casellas, R. Martínez, R. Muñoz, L. Liu, T. Tsuritani, and I. Morita, “Dynamic provisioning via a stateful PCE with instantiation capabilities in GMPLS-controlled flexi-grid DWDM networks,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 2013, pp. 1–3.
  21. E. Crabbe, I. Minei, S. Sivabalan, and R. Varga, “PCEP extensions for PCE-initiated LSP setup in a stateful PCE model,” IETF draft-ietf-pce-pce-initiated-lsp (work in progress), 2013.
  22. A. Castro, L. Velasco, M. Ruiz, M. Klinkowski, J. P. Fernández-Palacios, and D. Careglio, “Dynamic routing and spectrum (re) allocation in future flexgrid optical networks,” Comput. Netw., vol. 56, no. 12, pp. 2869–2883, 2012.
  23. L. Gifre, F. Paolucci, A. Aguado, R. Casellas, A. Castro, F. Cugini, P. Castoldi, L. Velasco, and V. López, “Experimental assessment of in-operation spectrum defragmentation,” Photon. Netw. Commun., vol. 27, pp. 128–140, 2014.
  24. F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini, F. Fresi, N. Sambo, L. Poti, and P. Castoldi, “Push-pull defragmentation without traffic disruption in flexible grid optical networks,” J. Lightw. Technol., vol. 31, no. 1, pp. 125–133, 2013.
  25. R. Muñoz, R. Vilalta, R. Casellas, R. Martínez, S. Frigerio, and A. Lometti, “Design and experimental evaluation of dynamic inverse-multiplexing provisioning in GMPLS-controlled flexi-grid DWDM networks with sliceable OTN BVTs,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 22–26, 2013, pp. 1–3.
  26. M. Jinno, H. Takara, Y. Sone, K. Yonenaga, and A. Hirano, “Multiflow optical transponder for efficient multilayer optical networking,” IEEE Commun. Mag., vol. 50, no. 5, pp. 56–65, 2012.
  27. Interfaces for the Optical Transport Network (OTN), ITU-T G.709, 2009.
  28. R. Muñoz, R. Vilalta, M. S. Moreolo, J. Fàbrega, R. Casellas, F. Vílchez, R. Martínez, S. Frigerio, and A. Lometti, “Dynamic differential delay aware RMSA for elastic multi-path provisioning in GMPLS Flexi-grid DWDM networks,” presented at the Opt. Fiber Commun. Conf. Expo./Nat. Fiber Opt. Eng. Conf., Anaheim, CA, USA, Mar. 9–13, 2014.
  29. O. N. Foundation, “Onf white paper, software-defined networking: The new norm for networks,” Tech. Rep., Open Networking Foundation(ONF) White Paper, 2012.
  30. R. Vilalta, R. Muñoz, R. Casellas, and R. Martínez, “Dynamic virtual GMPLS-controlled WSON using a resource broker with a VNT manager on the adrenaline testbed,” Opt. Exp., vol. 20, no. 28, pp. 29 149–29 154, 2012.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited