Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 18,
  • pp. 3132-3148
  • (2014)

Combined Deterministic and Modified Monte Carlo Method for Calculating Impulse Responses of Indoor Optical Wireless Channels

Not Accessible

Your library or personal account may give you access

Abstract

Because of the importance of calculating an accurate impulse response of an indoor optical wireless room environment that includes sufficient orders of multipath reflections from reflecting surfaces of the room, several different algorithms exist to solve the problem of calculating impulse responses accurately and in a reasonable amount of computing time. Deterministic approaches that divide the reflecting surfaces into small elements give the best accuracy but they require high computing time. Modified Monte Carlo methods provide a very fast approach of calculating impulse responses but the calculated impulse responses contain variance or, in other words, they are not as temporally smooth when compared to deterministic approaches. In this paper, we have taken a combined approach where we calculate the contribution of first reflections to the total impulse response by a deterministic method, and then the contributions of second and rest of the reflections to the total impulse response are calculated by the Modified Monte Carlo method. This carries the advantage of both of these approaches. Moreover, the algorithm can be easily implemented for parallel computation similar to the Modified Monte Carlo method to utilize the full power of modern multicore computer processors.

© 2014 IEEE

PDF Article
More Like This
Comparison of Monte Carlo ray-tracing and photon-tracing methods for calculation of the impulse response on indoor wireless optical channels

Oswaldo González, Silvestre Rodríguez, Rafael Pérez-Jiménez, Beatriz R. Mendoza, and Alejandro Ayala
Opt. Express 19(3) 1997-2005 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.