Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 18,
  • pp. 3206-3214
  • (2014)

Channel Equalization in Optical OFDM Systems Using Independent Component Analysis

Not Accessible

Your library or personal account may give you access

Abstract

We study the channel equalizer (CE) based on independent component analysis (ICA) for optical orthogonal-frequency-division-multiplexing (OFDM) systems without using training symbols (TSs). We begin by studying mathematical ICA models of optical OFDM systems and considering both the direct-detection optical OFDM (DDO-OFDM) and polarization division multiplexing coherent-detection optical OFDM (PDM-CO-OFDM) systems. One purpose of this paper is to provide a comprehensive study of ICA-based CE in both DDO-OFDM and CO-OFDM systems. Next, we propose a channel matrix initialization method to solve the permutation indeterminacy and complex uncertain scaling problems in ICA for both DDO-OFDM and PDM-CO-OFDM systems. Several algorithms are then investigated for ICA-based CEs including maximization of negentropy (MN), maximum likelihood (ML), minimization of mutual information (MMI), and fast ICA. It is found that the ICA-based CEs using MN, ML, and MMI can successfully recover the OFDM signal. Through both simulation and experiment, we show that in comparison to conventional TSs-based CEs with and without inter-symbol frequency-domain averaging (ISFA) and adaptive decision-directed CE, ICA-based CEs can provide slightly better or similar performances for both SP and DP optical OFDM systems with QPSK and 16-QAM modulations. Specifically, apart from higher spectral efficiency, the ICA-based CEs show significant better chromatic dispersion and polarization mode dispersion (PMD) tolerances than TSs-based CEs with ISFA in PDM-CO-OFDM systems over long-haul transmission.

© 2014 IEEE

PDF Article
More Like This
Independent component analysis based channel equalization for 6 × 6 MIMO-OFDM transmission over few-mode fiber

Zhixue He, Xiang Li, Ming Luo, Rong Hu, Cai Li, Ying Qiu, Songnian Fu, Qi Yang, and Shaohua Yu
Opt. Express 24(9) 9209-9217 (2016)

Experimental Study of a novel adaptive decision-directed channel equalizer in 28 GBaud RGI-DP-CO-OFDM transport systems

Mohammad E. Mousa-Pasandi, Qunbi Zhuge, Xian Xu, Mohamed M. Osman, Mathieu Chagnon, and David V. Plant
Opt. Express 20(15) 17017-17028 (2012)

Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM

Xiang Liu and Fred Buchali
Opt. Express 16(26) 21944-21957 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved