OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 6 — Mar. 15, 2014
  • pp: 1075–1087

Photon Information Efficient Communication Through Atmospheric Turbulence–Part I: Channel Model and Propagation Statistics

Nivedita Chandrasekaran and Jeffrey H. Shapiro

Journal of Lightwave Technology, Vol. 32, Issue 6, pp. 1075-1087 (2014)

View Full Text Article

Acrobat PDF (868 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Optical communication with high photon-efficiency (many bits/photon) and high spectral efficiency (SE) (many bits/s-Hz) cannot be achieved unless multiple spatial modes are employed. For vacuum propagation, it is known that achieving 10 bits/photon and 5 bits/s-Hz requires 189 low-loss spatial modes at the ultimate Holevo limit and 4500 such modes at the Shannon limit for on–off keying with direct detection. For terrestrial propagation paths, however, atmospheric turbulence corrupts multiple spatial-mode operation. This paper derives power-transmissivity bounds and average intermodal crosstalks for the turbulent channel that depend solely on the mutual coherence function of the atmospheric Green’s function. These statistics are then evaluated for $\sim$ 200 spatial-mode systems whose transmitters use either focused-beam, Hermite–Gaussian (HG), or Laguerre–Gaussian (LG) modes and whose receivers either do or do not employ adaptive optics. It is shown that: (1) adaptive optics are not necessary for achieving both high photon information efficiency (PIE) and high SE; (2) systems employing HG or LG modes achieve the same capacities through turbulence; and (3) the orbital angular momentum carried by LG modes does not provide turbulence immunity. In the companion paper [N. Chandrasekaran, J. H. Shapiro, and L. Wang, “Photon Information Efficient Communication Through Atmospheric Turbulence—Part II: Bounds on Ergodic Classical and Private Capacities,” J. Lightw. Technol., vol. 32, no. 6, pp. 1088–1097, Mar. 2014], the transmissivity bounds are used to quantify the turbulence-induced loss in PIE versus SE performance for these mode sets.

© 2013 IEEE

Nivedita Chandrasekaran and Jeffrey H. Shapiro, "Photon Information Efficient Communication Through Atmospheric Turbulence–Part I: Channel Model and Propagation Statistics," J. Lightwave Technol. 32, 1075-1087 (2014)

Sort:  Year  |  Journal  |  Reset


  1. D. M. Boroson, B. S. Robinson, D. A. Burianek, A. Biswas, "Overview and status of the lunar laser communications demonstration," Proc. SPIE 8246, art. 82460C , (2012).
  2. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. O. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang, K. K. Berggren, "781 Mbit/s photon-counting optical communications using a superconducting nanowire detector," Opt. Lett 31, 444-446 (2006).
  3. R. J. Essiambre, R. W. Tkach, "Capacity trends and limits of optical communication networks," Proc. IEEE 100, 1035-1055 (2012).
  4. G. Li, "Recent advances in coherent optical communication ," Adv. Opt. Photon. 1, 279-307 (2009).
  5. S. Guha, Z. Dutton, J. H. Shapiro, "On quantum limit of optical communications: concatenated codes and joint detection receivers," Dig. IEEE Int. Symp. Inform. Theory (2011) pp. 274-278 .
  6. J. P. Gordon, "Quantum effects in communication systems ," Proc. IRE 50, 1898-1908 (1962).
  7. J. P. Gordon, Quantum Electronics and Coherent Light (Academic, 1964) pp. 156-181.
  8. V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, J. H. Shapiro, H. P. Yuen, "Classical capacity of the lossy bosonic channel: The exact solution," Phys Rev. Lett 92 , (2004).
  9. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, "112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber," Opt. Exp. 19, 16665-16671 (2011).
  10. B. Zhu, J. M. Fini, M. F. Yan, X. Liu, S. Chandrasekhar, T. F. Taunay, M. Fishteyn, E. M. Monberg, F. V. Dimarcello, "High-capacity space-division-multiplexed DWDM transmission using multicore fiber," J. Lightw. Technol 30, 486-492 (2012).
  11. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaka, T. Kobayashi, M. Watanabe, "305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber ," J. Lightw. Technol 31, 554-562 (2013).
  12. M. M. Wilde, S. Guha, S.-H. Tan, S. Lloyd, "Explicit capacity-achieving receivers for optical communication and quantum reading," Proc. IEEE Int. Symp. Inform. Theory (2012 ) pp. 551-555.
  13. S. Dolinar, B. I. Erkmen, B. Moision, K. Birnbaum, D. Divsalar, "The ultimate limits of optical communication efficiency with photon-counting receivers ," Dig. IEEE Int. Symp. Inf. Theory (2012) pp. 541-545.
  14. D. Slepian, "Analytical solution to two apodization problems ," J. Opt. Soc. Amer. 55, 1110-1114 (1965).
  15. D. J. T. Healey, D. R. Wisely, I. Neild, P. Cochrane, "Optical wireless: The story so far ," IEEE Commun. Mag 36, 72-74, 79–82 (1998).
  16. D. Kedar, S. Arnon, "Urban optical wireless communication networks: The main challenges and possible solutions ," IEEE Commun. Mag. 42, S2-S7 (2004).
  17. R. S. Kennedy, "Communication through optical scattering channels: An introduction," Proc. IEEE 58, 1651-1665 (1970).
  18. J. H. Shapiro, Laser Beam Propagation in the Atmosphere (Springer-Verlag, 1978, ch. 6 ).
  19. N. Chandrasekaran, J. H. Shapiro, and L. Wang, “Photon information efficient communication through atmospheric turbulence—Part II: Bounds on ergodic classical and private capacities,” J. Lightw. Technol., vol. 32, no. 6, pp. 1088–1097, Mar. 2014..
  20. J. H. Shapiro, "Normal-mode approach to wave propagation in the turbulent atmosphere," Appl. Opt. 13, 2614-2619 (1974 ).
  21. B. I. Erkmen, J. H. Shapiro, "Performance analysis for near-field atmospheric optical communications," Proc. IEEE Global Telecommun. Conf. (2004) pp. 318 -324.
  22. J. H. Shapiro, "Near-field turbulence effects on quantum key distribution," Phys Rev. A 67, (2003).
  23. J. H. Shapiro, S. Guha, B. I. Erkmen, "Ultimate channel capacity of free-space optical communications," J. Opt. Netw. 4 , 501-516 (2005).
  24. A. A. M. Saleh, "An investigation of laser wave depolarization due to atmospheric transmission," IEEE J. Quantum Electron 3, 540-543 (1967).
  25. C. K. Rushforth, R. W. Harris, "Restoration, resolution, and noise," J. Opt. Soc. Amer 58, 539-544 (1968).
  26. G. Toraldo di Francia, "Degrees of freedom of an image ," J. Opt. Soc. Amer. 59, 799-803 (1969).
  27. D. Slepian, "Prolate spheroidal wave functions, Fourier analysis and uncertainty–IV: Extensions to many dimensions; generalized prolate spheroidal functions," Bell Syst. Tech. J. 43, 3009 -3057 (1964).
  28. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic , 1978).
  29. L. C. Andrews, R. L. Phillips, Laser Beam Scintillation With Applications (SPIE, 2001).
  30. L. C. Andrews, R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
  31. B. Rodenburg, M. Mirhosseini, M. Malik, M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W. Boyd, “Simulating real-world turbulence in the lab: Orbital angular momentum communication through 1 km of atmosphere,” arXiv: 1301.7454 [physics.optics], 2013..
  32. J. A. Anguita, M. A. Neifeld, B. V. Vasic, " Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space link," Appl. Opt 47, 2414-2429 (2008).
  33. A. W. Marshall, I. Olkin, Inequalities: Theory of Majorization and Its Applications (Academic, 1979).
  34. C. Paterson, "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett. 94, (2005).
  35. M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, R. W. Boyd, "Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding," Opt. Exp. 20, 13195-13200 (2012).
  36. S. M. Wandzura, "Meaning of quadratic structure functions ," J. Opt. Soc. Amer. 70, 745-747 (1980).
  37. A. Vaziri, G. Weihs, A. Zeilinger, "Experimental two-photon, three-dimensional entanglement for quantum communication," Phys. Rev. Lett 89, (2002).
  38. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, "Entanglement of the orbital angular momentum states of photons ," Nature 412, 313-316 (2001).
  39. Y. Ren, H. Huang, G. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R .W. Boyd, J. H. Shapiro, A. E. Willner, "Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing," Opt. Lett. 38, 4062-4065 (2013).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited