OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 6 — Mar. 15, 2014
  • pp: 1075–1087

Photon Information Efficient Communication Through Atmospheric Turbulence–Part I: Channel Model and Propagation Statistics

Nivedita Chandrasekaran and Jeffrey H. Shapiro

Journal of Lightwave Technology, Vol. 32, Issue 6, pp. 1075-1087 (2014)


View Full Text Article

Acrobat PDF (868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Optical communication with high photon-efficiency (many bits/photon) and high spectral efficiency (SE) (many bits/s-Hz) cannot be achieved unless multiple spatial modes are employed. For vacuum propagation, it is known that achieving 10 bits/photon and 5 bits/s-Hz requires 189 low-loss spatial modes at the ultimate Holevo limit and 4500 such modes at the Shannon limit for on–off keying with direct detection. For terrestrial propagation paths, however, atmospheric turbulence corrupts multiple spatial-mode operation. This paper derives power-transmissivity bounds and average intermodal crosstalks for the turbulent channel that depend solely on the mutual coherence function of the atmospheric Green’s function. These statistics are then evaluated for $\sim$ 200 spatial-mode systems whose transmitters use either focused-beam, Hermite–Gaussian (HG), or Laguerre–Gaussian (LG) modes and whose receivers either do or do not employ adaptive optics. It is shown that: (1) adaptive optics are not necessary for achieving both high photon information efficiency (PIE) and high SE; (2) systems employing HG or LG modes achieve the same capacities through turbulence; and (3) the orbital angular momentum carried by LG modes does not provide turbulence immunity. In the companion paper [N. Chandrasekaran, J. H. Shapiro, and L. Wang, “Photon Information Efficient Communication Through Atmospheric Turbulence—Part II: Bounds on Ergodic Classical and Private Capacities,” J. Lightw. Technol., vol. 32, no. 6, pp. 1088–1097, Mar. 2014], the transmissivity bounds are used to quantify the turbulence-induced loss in PIE versus SE performance for these mode sets.

© 2013 IEEE

Citation
Nivedita Chandrasekaran and Jeffrey H. Shapiro, "Photon Information Efficient Communication Through Atmospheric Turbulence–Part I: Channel Model and Propagation Statistics," J. Lightwave Technol. 32, 1075-1087 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-6-1075

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited