OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 6 — Mar. 15, 2014
  • pp: 1132–1143

40G-OCDMA-PON System With an Asymmetric Structure Using a Single Multi-Port and Sampled SSFBG Encoder/Decoders

Ryosuke Matsumoto, Takahiro Kodama, Satoshi Shimizu, Ryujiro Nomura, Koji Omichi, Naoya Wada, and Ken-Ichi Kitayama

Journal of Lightwave Technology, Vol. 32, Issue 6, pp. 1132-1143 (2014)

View Full Text Article

Acrobat PDF (1454 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In the hybrid optical code division multiple access (OCDMA) architectures using different types of optical encoder/decoder (E/Ds) between an optical line terminal and optical network units, a hybrid 40G-OCDMA-PON with a single multi-port and super-structured fiber Bragg grating (SSFBG) E/Ds is studied as a candidate system beyond next-generation PON stage 2 (NG-PON2). In this paper, we have developed uniformed and sampled SSFBG E/Ds with different refractive index profiles and have compared their code performances in a hybrid 40G-OCDMA-PON system. The experimental results show that the sampled profile improves the code dependent performances presented in many OCDMA systems. We have also demonstrated a full-duplex 4-user  $\times$  40 Gb/s hybrid OCDMA-PON system by applying the sampled SSFBG E/Ds. An asynchronous full-duplex 50 km transmission with a total capacity of 160 Gb/s (4-user  $\times$  40 Gb/s) has been achieved for the first time. Furthermore, we focus on major requirements in NG-PON2 and discuss several issues to introduce the hybrid 40G-OCDMA-PON for optical access networks.

© 2014 IEEE

Ryosuke Matsumoto, Takahiro Kodama, Satoshi Shimizu, Ryujiro Nomura, Koji Omichi, Naoya Wada, and Ken-Ichi Kitayama, "40G-OCDMA-PON System With an Asymmetric Structure Using a Single Multi-Port and Sampled SSFBG Encoder/Decoders," J. Lightwave Technol. 32, 1132-1143 (2014)

Sort:  Year  |  Journal  |  Reset


  1. Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks, IEEE Std. 802.3av-2009..
  2. 10-Gigabit-Capable Passive Optical Network (XG-PON) systems, ITU-T Recommendation G987..
  3. P. Chanclou, A. Cui, F. Geihardt, H. Nakamura, D. Nesset, " Network operator requirements for the next generation of optical access networks," IEEE Netw. 26, 8-14 (2012).
  4. Y. Luo, X. Zhou, F. Effenbeger, X. Yan, G. Peng, Y. Qian, Y. Ma, "Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2)," J. Lightw. Technol. 31 , 587-593 (2013).
  5. H. Nakamura, "NG-PON2 technology," Proc. Opti. Fiber Comumun. Conf. Nat. Fiber Opt. Eng. Conf. (2013) pp. 1-51.
  6. T. Kodama, N. Wada, G. Cincotti, X. Wang, K. Kitayama, "Noise suppression using optimum filtering of OCs generated by a multiport encoder/decoder ," Opt. Exp. 20, 10320-10329 (2012).
  7. T. Kodama, N. Wada, G. Cincotti, K. Kitayama, "Asynchronous OCDM-based 10 G-PON using cascaded multiport E/Ds to suppress MAI noise," J. Lightw. Technol. 31, 3258-3266 (2013 ).
  8. P. Prucnal, Optical Code Divison Muliple Access (CRC Press, 2005).
  9. K. Kitayama, X. Wang, N. Wada, "OCDMA over WDM PON-solution path to gigabit-symmetric FTTH," J. Lightw. Technol. 24, 1654-1662 (2006).
  10. G. Cincotti, N. Wada, K. Kitayama, "Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers—Part I: Modeling and design ," J. Lightw. Technol. 24, 103-112 (2006).
  11. N. Kataoka, G. Cincotti, N. Wada, K. Kitayama, "Demonstration of asynchronous, 40 Gbps  $\times$  4-user DPSK-OCDMA transmission using a multi-port encoder/decoder," Opt. Exp. 19, 965-970 (2011).
  12. N. Kataoka, N. Wada, X. Wang, G. Cincotti, A. Sakamoto, Y. Terada, T. Miyazaki, K. Kitayama, "Field trial of duplex, 10 Gbps  $\times$  8-user DPSK-OCDMA system using a single 16  $\times$  16 multi-port encoder/decoder and 16-level phase-shifted SSFBG encoder/decoders," J. Lightw. Technol. 27, 299- 305 (2009).
  13. S. Yoshima, N. Nakagawa, N. Kataoka, N. Suzuki, M. Noda, M. Nogami, J. Nakagawa, K. Kitayama, "10 Gb/s-based PON over OCDMA uplink burst transmission using SSFBG encoder/multi-port decoder and burst-mode receiver," J. Lightw. Technol. 25, 365-371 (2010 ).
  14. P. C. Teh, M. Ibsen, P. Petropoulos, D. J. Richardson, "Demonstration of a four-channel WDM/OCDMA systme using 255-chip 320-Gchip/s quaternary phase coding gratings," IEEE. Photon. Technol. Lett. 14, 227-229 (2002).
  15. G. Manzacca, A. Maria, X. Wang, N. Wada, G. Cincotti, K. Kitayama, "Performance analysis of a multiport encoder/decoder in OCDMA senario," J. Sel. Quantum Electron. 13 , 1415-1421 (2007).
  16. K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1274 (1997).
  17. N. Kataoka, X. Wang, N. Wada, G. Cincotti, Y. Terada, and K. Kitayama, “8  $\times$  8 full-duplex demonstration of asynchronous, 10 Gbps, DPSK-OCDMA system using apodized SSFBG and multi-port en/decoder,” in Proc. Eur. Conf. Opt. Commun., Sep. 2009, paper no. 655, pp. 1–2. .
  18. Y. Nasu, S. Yamashita, "Densification of sampled fiber Bragg gratings using multiple-phase-shift (MPS) technique ," J. Lightw. Technol. 23, 1808-1817 (2005).
  19. M . Lima, A. Teixeria, and J. Rocha, “Optimization of apodized fiber grating filters for WDM systems,” in Proc. 12th Annu. Meeting IEEE Lasers Electro-Opt. Soc., Nov. 1999, pp. 876–877, Paper Thz2..
  20. S. Ugale, V. Mishra, "Fiber Bragg grating modeling, characterization and optimization with different index profiles ," J. Eng. Sci. Technol. 2, 4463-4468 (2010).
  21. S. Yoshima, Y. Tanaka, N. Kataoka, N. Wada, J. Nakagawa, K. Kitayama, "Full-duplex, extended-reach 10G-TDM-OCDM-PON system without En/decoder at ONU," J. Lightw. Technol. 31, 43-49 (2013).
  22. N. Kataoka, G. Cincotti, N. Wada, and K. Kitayama, “2.56 Tbps (40-Gbps  $\times$  8-wavelength  $\times$  4-OC  $\times$  2-POL) asynchronous WDM-OCDMA-PON using a multi-port encoder/decoder,” in Proc. Eur. Conf. Opt. Commun., Sep. 2011, pp. 1–3, Paper Th.13.B.6. .
  23. E. Wong, "Next-generation broadband access networks and technologies ," J. Lightw. Technol. 30, 597-608 (2012).
  24. T. Kodama, Y. Tanaka, S. Yoshima, N. Kataoka, J. Nakagawa, S. Shimizu, N. Wada, K. Kitayama, "Scaling the system capacity and reach of a 10G-TDM-OCDM-PON system without an en/decoder at an ONU," J. Opt. Commun. Netw. 5, 134 -143 (2013).
  25. S. Kobayashi, S. Kutsuzawa, K. Sasaki, H. Iwamura, N. Minato, A. Nishiki, "Demonstration of 80-km-long SMF transmission on time-spread wavelength-hopping-type OCDM with dispersion compensators," IEEE. Photon. Technol. Lett. 19, 1350-1352 (2007).
  26. J. Kim, C. Park, "Optical design and analysis of CWDM upstream TWDM PON for NG-PON2," J. Opt. Fiber. Technol. 19, 250-258 (2013).
  27. S. Yamashita, T. Yoshida, S. Set, P. Polynkin, N. Peyghambarian, "Passively mode-locked short-cavity 10GHz Er:Yb-codoped phosphate-fiber laser using carbon nanotubes ," Proc. SPIE. (2007) pp. Y1-Y9.
  28. R. Kashyap, Fiber Bragg Grating (USA Academic, 1993).
  29. X. Wang, K. Matsushima, A. Nishiki, N. Wada, K. Kitayama, "High reflectivity superstructured FBG for coherent optical code generation and recognition ," Opt. Exp. 12, 5457-5468 (2004).
  30. C. Lam, Passive Optical Networks (Academic , 2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited