OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 6 — Mar. 15, 2014
  • pp: 1177–1182

Parametric Gain and Conversion Efficiency in Nanophotonic Waveguides With Dispersive Propagation Coefficients and Loss

S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrié, and A. De Rossi

Journal of Lightwave Technology, Vol. 32, Issue 6, pp. 1177-1182 (2014)


View Full Text Article

Acrobat PDF (706 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Nanophotonic waveguides can be engineered in order to exhibit slow mode propagation thereby enhancing the nonlinear responses. In such waveguides, loss and nonlinear coefficients are strongly wavelength dependent, a property that must be considered when the signal to pump detuning is large. Exact formulas for the parametric gain and conversion efficiency, accounting for the dispersion of losses and nonlinearity, are derived here. They can be applied to any waveguide presenting such features; in particular they have been calculated for a III–V semiconductor photonic crystal waveguide, where narrow- and broad-band amplification are predicted. The asymmetry of losses causes major asymmetries in the gain and conversion efficiency, which are no longer simply related as in the case of waveguides in which loss do not depend on the wavelength.

© 2014 IEEE

Citation
S. Roy, M. Santagiustina, A. Willinger, G. Eisenstein, S. Combrié, and A. De Rossi, "Parametric Gain and Conversion Efficiency in Nanophotonic Waveguides With Dispersive Propagation Coefficients and Loss," J. Lightwave Technol. 32, 1177-1182 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-6-1177


Sort:  Year  |  Journal  |  Reset

References

  1. T. F. Krauss, "Slow light in photonic crystal waveguides ," J. Phys. D, Appl. Phys. 40, 2666-2670 (2007).
  2. T. Baba, "Slow light in photonic crystals," Nature Photon. 2, 465-473 (2008).
  3. J. B. Khurgin, R. S. Tucke, Slow Light: Science and Applications (CRC Press, 2009).
  4. C. Monat, M. de Sterke, B. J. Eggleton, "Slow light enhanced nonlinear optics in periodic structures," J. Opt. 12, 288, 104003 (2010).
  5. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O'Faolain, T. F. Krauss, B. J. Eggleton, D. J. Moss, "Optical signal processing on a silicon chip at 640Gb/s using slow-light," Opt. Exp. 18, 7770-7781 (2010).
  6. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. E. Willner, "Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation," Opt. Exp. 20, 1685-1690 (2012).
  7. M. Ebnali-Heidari, C. Monat, C. Grillet, M. K. Moravvej-Farshi, "A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration," Opt. Exp. 17, 18340-18353 (2009).
  8. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, G. Vadalà, "Highly efficient four wave mixing in GaInP photonic crystal waveguides," Opt. Lett. 35, 1440-1442 (2010).
  9. M. Santagiustina, C. G. Someda, G. Vadalá, S. Combrié, A. De Rossi, "Theory of slow light enhanced four-wave mixing in photonic crystal waveguides ," Opt. Exp. 18, 21024-21029 (2010).
  10. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, T. F. Krauss, "Four-wave mixing in slow light engineered silicon photonic crystal waveguides," Opt. Exp. 18 , 22915-22927 (2010).
  11. J. Li, L. O’Faolain, I. H. Rey, T. F. Krauss, "Four-wave mixing in photonic crystal waveguides: Slow light enhancement and limitations," Opt. Exp. 19, 4458-4463 (2011).
  12. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O'Faolain, T. F. Krauss, B. J. Eggleton, "Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide," Opt. Lett. 36, 1728-1730 (2011).
  13. P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, A. De Rossi, "Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides," Opt. Lett. 36, 2629-2631 (2011).
  14. I. Cestier, S. Combrié, S. Xavier, G. Lehoucq, A. D. Rossi, G. Eisenstein, "Chip-scale parametric amplifier with 11-db gain at 1550 nm based on a slow-light GaInP photonic crystal waveguide," Opt. Lett. 37, 3996-3998 (2012).
  15. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Exp. 14 , 9444-9450 (2006).
  16. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Expr. 16, 6227-6232 (2008).
  17. P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, "Control of dispersion in photonic crystal waveguides using group symmetry theory," Opt. Exp. 20, 13108-13114 (2012 ).
  18. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, T. F. Krauss, "Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer–Lambert law ," Phys. Rev. B 80, 195305-195310 (2009).
  19. S. Combrié, Q. Vy Tran, C. Husko, P. Colman, A. De Rossi, "High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption," Appl. Phys. Lett. 95, 221108 -221110 (2009).
  20. L. OFaolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovi, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, T. F. Krauss, "Loss engineered slow light waveguides," Opt. Exp. 18, 27627-27638 (2010).
  21. N. C. Panoiu, J. F. McMillan, C. W. Wong, "Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides," IEEE J. Sel. Top. Quantum Electron. 16, 257266 (2010).
  22. S. Roy, M.Santagiustina, P. Colman, S. Combri, A. De Ross, "Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguide," IEEE Photon. J. 4, 224-233 (2012).
  23. A. Melloni, F. Morichetti, M. Martinelli, "Four-wave mixing and wavelength conversion in coupled-resonator optical waveguide," J. Opt. Soc. Am. B 25, C87-C97 (2008).
  24. I. H. Rey, Y. Lefevre, S. A. Schulz, N. Vermeulen, T. F. Krauss, "Scaling of Raman amplification in realistic slowlight photonic crystal waveguides," Phys. Rev. B, Condens. Matter Mater. Phys. 84, 035306 (2011).
  25. S. Roy, A. Willinger, S. Combrié, A. D. Rossi, G. Eisenstein, M. Santagiustina, "Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides," Opt. Lett. 37, 29192921 (2012).
  26. A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, G. Eisenstein, "Parametric gain in dispersion engineered photonic crystal waveguides," Opt. Exp. 21, 49955004 (2013).
  27. A. Willinger, S. Roy, M. Santagiustina, S. Combrié, A. D. Rossi, I. Cestier, G. Eisenstein, "Dual-pump parametric amplification in dispersion engineered photonic crystal waveguides," Opt. Exp. 21, 10440-10453 (2013).
  28. M. Karlsson, "Modulational instability in lossy optical fibers ," J. Opt. Soc. Amer. B 12, 2071-2077 (1995).
  29. M. E. Marhic, Optical Parametric Amplifiers, Oscillators, and Related Devices (Cambridge Univ. Press, 2008).
  30. T. Tanemura, Y. Ozeki, K. Kikuchi, "Modulational instability and parametric amplification induced by loss dispersion in optical fibers," Phys. Rev. Lett. 93, 163902-163905 (2004).
  31. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  32. J. D. Joannopoulos (2008, Feb.). [Online]. Available: http://ab-initio.mit.edu/photons/.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited