OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 6 — Mar. 15, 2014
  • pp: 1183–1189

Frequency Continuous Tunable Terahertz Metamaterial Absorber

Ben-Xin Wang, Ling-Ling Wang, Gui-Zhen Wang, Wei-Qing Huang, Xiao-Fei Li, and Xiang Zhai

Journal of Lightwave Technology, Vol. 32, Issue 6, pp. 1183-1189 (2014)

View Full Text Article

Acrobat PDF (556 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Metamaterial-based perfect absorbers utilize the intrinsic loss, with the aid of appropriate structural design (completely suppress transmission and reflection), to achieve near unity absorption at a certain frequency. The frequency of the reported absorbers is usually fixed and operates over a limited bandwidth, which greatly hampers their practical applications. Active or dynamic control over their resonance frequency is urgently necessary. Herein, we propose a novel approach for efficient tuning of the frequency of the absorber by shifting the movable part of the composite structure composed of the fixed and movable parts. The concept is rather general and applicable to various absorbers as long as the sandwich structure design is valid. The demonstrated continuous tuning of metamaterial absorber can find practical applications in detection, imaging, spectroscopy and selective thermal emitters.

© 2014 IEEE

Ben-Xin Wang, Ling-Ling Wang, Gui-Zhen Wang, Wei-Qing Huang, Xiao-Fei Li, and Xiang Zhai, "Frequency Continuous Tunable Terahertz Metamaterial Absorber," J. Lightwave Technol. 32, 1183-1189 (2014)

Sort:  Year  |  Journal  |  Reset


  1. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena ," IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999 ).
  2. B. X. Wang, L. L. Wang, G. Z. Wang, L. Wang, X. Zhai, X. F. Li, W. Q. Huang, "A simple nested metamaterial structure with enhanced bandwidth performance," Opt. Commun. 303, 13-14 (2013).
  3. J. Yang, C. Sauvan, H. T. Liu, P. Lalanne, "Theory of fishnet negative-index optical metamaterials," Phys. Rev. Lett. 107, 043903 (2011).
  4. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
  5. N. Liu, H. Liu, S. Zhu, H. Giessen, "Stereometamaterials," Nat. Photon. 3, 157-162 (2009).
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008).
  7. D. Y. Shchegolkov, A. K. Azad, J. F. Ohara, E. I. Simakov, "Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers," Phys. Rev. B 82, 205117 (2010).
  8. Z. Lu, M. Zhao, P. Xie, L. Wu, Y. Yu, P. Zhang, Z. Yang, "Reflection properties of metallic helical metamaterials," J. Lightw. Technol. 30, 3050-3054 (2012).
  9. Z. Lu, M. Zhao, Z. Yang, L. Wu, P. Zhang, "Helical metamaterial absorbers: Broadband and polarization-independent in optical region," J. Lightw. Technol. 31, 2762- 2768 (2013).
  10. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, R. D. Averitt, "A dual band terahertz metamaterial absorber ," J. Phys. D 43, 225102 (2010).
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett 10, 2342-2348 (2010).
  12. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett. 36, 1524 -1526 (2011).
  13. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, D. R. S. Cumming, "A terahertz polarization insensitive dual band metamaterial absorber," Opt. Lett. 36, 945-947 (2011).
  14. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Exp. 19, 9401-9407 (2011).
  15. Y. Ye, Y. Jin, S. He, "Omni-directional, broadband and polarization-insensitive thin absorber in the terahertz regime," J. Opt. Soc. Amer. B 27, 498-503 (2010 ).
  16. J. Grant, Y. Ma, S. Saha, A. Khalid, D. R. S. Cumming, " Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett. 36, 3476-3478 ( 2011).
  17. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, X. Zhai, "Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber," IEEE Photo. Techno. Lett. 26 , 111-114 (2014).
  18. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, X. Zhai, "A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber," Appl. Phys. A ( 2013) doi: 10.1007/s00339-013-8158-5.
  19. F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, S. He, "Ultra-broadband microwave metamaterial absorber ," Appl. Phys. Lett. 100, 103506 (2012).
  20. Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He, N. X. Fang, "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett. 99, 253101 (2011 ).
  21. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, Y. C. Chang, "Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays," Opt. Exp. 20, 10376-10381 (2012).
  22. Q. Ye, H. Lin, X. Chen, and H. L. Yang, “A tunable metamaterial absorber made by micro-gaps structures,” in Proc. Cross Strait Quad-Regional Radio Sci. Wireless Technol. Conf., 2011, vol. 234, p. 1..
  23. X. Li, Q. Feng, X. Luo, and M. Hong, “Frequency controllable metamaterial absorber by an added dielectric layer,” in Proc. AIP Conf., p. 1328..
  24. B. Zhu, C. Huang, Y. Feng, J. Zhao, T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," PIER B 24 , 121-129 (2010).
  25. Y. Huang, Y. Tian, G. Wen, W. Zhu, "Experimental study of absorption band controllable planar metamaterial absorber using asymmetrical snowflake-shaped configuration," J. Opt. 15, 055104 (2013).
  26. P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, Y. P. Lee, "Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials," Appl. Phys. Lett. 102, 081122 (2013).
  27. C. M. Watts, X. Liu, W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater. 24, OP98 -OP120 (2012).
  28. Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, X. Liu, "Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear," Opt. Exp. 19, 10193-10198 (2011).
  29. X. Shen, T. J. Cui, " Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber," J. Opt. 14, 114012 ( 2012).
  30. B. Zhu, Y. Feng, J. Zhao, C. Huang, T. Jiang, "Switchable metamaterial reflector/absorber for different polarized electromagnetic waves," Appl. Phys. Lett. 97, 051906 (2010).
  31. Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Z. Chen, Y. Long, Y.-L. Jing, Y. Lin, P.-X. Zhang, "A tunable hybrid metamaterial absorber based on vanadium oxide films," J. Phys. D 45, 235106 (2012).
  32. Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, T. J. Huang, "Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array," Appl. Phys. Lett. 100, 053119 (2012 ).
  33. D. Shrekenhamer, W.-C. Chen, W. J. Padilla, "Liquid crystal tunable metamaterial absorber," Phys. Rev. Lett. 110, 177403 (2013).
  34. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C. M. Soukoulis, " Negative index materials using simple short wire pairs," Phys. Rev. B 73, 041101(R) (2006).
  35. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, D. L. Kwong, "Switchable magnetic metamaterials using micromachining processes ," Adv. Mater. 23, 1792-1796 (2011).
  36. Y. H. Fu, A. Q. Liu, W. M. Zhu, X. M. Zhang, D. P. Tsai, J. B. Zhang, T. Mei, J. F. Tao, H. C. Guo, X. H. Zhang, J. H. Teng, N. I. Zheludev, G. Q. Lo, D. L. kwong, "A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators," Adv. Fun. Mater. 21, 3589-3594 ( 2011).
  37. N. Liu, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, "Plasmonic building for magnetic molecules in three-dimensional optical metamaterials ," Adv. Matter. 20, 3859-3865 (2008).
  38. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Matter. 19, 3628 -3632 (2007).
  39. C. S. R. Kaipa, A. B. Yakovlev, M. G. Silveirinha, "Characterization of negative refraction with multilayered mushroom-type metamaterials at microwaves," J. Appl. Phys. 109, 044901 (2011).
  40. T. M. Floyd, Principles of Electric Circuits (Prentice-Hall, 2010).
  41. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett. 95, 241111 (2009).
  42. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, "Highly flexible wide angle of incident terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78 , 241103(R) (2008).
  43. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. H. Luo, A. J. Taylor, H. T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Opt. Lett. 37, 154-156 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited