OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 9 — May. 1, 2014
  • pp: 1647–1653

In-Band Label Extractor Based on Cascaded Si Ring Resonators Enabling 160 Gb/s Optical Packet Switching Modules

Peter De Heyn, Jun Luo, Stefano Di Lucente, Nicola Calabretta, Harm J. S. Dorren, and Dries Van Thourhout

Journal of Lightwave Technology, Vol. 32, Issue 9, pp. 1647-1653 (2014)

View Full Text Article

Acrobat PDF (1963 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Photonic integration of optical packet switching modules is crucial to compete with existing electronic switching fabrics in large data center networks. The approach of coding the forwarding packet information in an in-band label enables a spectral-efficient and scalable way of building low-latency large port count modular optical packet switching architecture. We demonstrate the error-free operation of the four in-band label extraction from ${160 Gb/s}$ optical data packets based on photonic integrated silicon-on-insulator ring resonators. Four low-loss cascaded ring resonators using the quasi-TM mode are used as narrowband filters to ensure the detection of four optical labels as well as the error-free forwarding of the payload at limited power penalty. Due to the low-loss and less-confined optical quasi-TM mode the resonators can be very narrowband and have low insertion loss. The effect of the bandwidth of the four ring resonators on the quality of the payload is investigated. We show that using four rings with 3dB bandwidth of ${21 pm}$ and only an insertion loss of ${3 dB}$ , the distortion on the payload is limited ( ${<}1.5\,{\rm dB}$ power penalty), even when the resonances are placed very close to the packet’s central wavelength. We also investigate the optical power requirements for error-free detection of the label as function of their spectral position relative to the center of the payload. The successful in-band positioning of the labels makes this component very scalable in amount of labels.

© 2014 IEEE

Peter De Heyn, Jun Luo, Stefano Di Lucente, Nicola Calabretta, Harm J. S. Dorren, and Dries Van Thourhout, "In-Band Label Extractor Based on Cascaded Si Ring Resonators Enabling 160 Gb/s Optical Packet Switching Modules," J. Lightwave Technol. 32, 1647-1653 (2014)

Sort:  Year  |  Journal  |  Reset


  1. C. Kachris, I. Tomkos, "A survey on optical interconnects for data centers," IEEE Commun. Surv. Tutorials 14, 1021-1036 (2012).
  2. European Union’s 7th Framework Programme. (2012). LIGHTNESS: Low latency and high throughput dynamic network infrastructures for high performance datacentre interconnects, [Online]. Available: http://www.ict-lightness.eu/.
  3. S. J. B. Yoo. (2011, Mar.). Energy efficiency in the future internet: The role of optical packet switching and optical-label switching. IEEE J. Sel. Top. Quantum Electron. [Online]. 17(2), pp. 406–418. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5658099 .
  4. F. Ramos, E. Kehayas, J. M. Martinez, R. Clavero, J. Marti, L. Stampoulidis, D. Tsiokos, H. Avramopoulos, J. Zhang, N. Chi, P. Jeppesen, N. Yan, I. T. Monroy, A. M. J. Koonen, M. T. Hill, Y. Liu, H. J. S. Dorren, R. V. Caenegem, D. Colle, M. Pickavet, B. Riposati, P. Holm-Nielsen, R. Van Caenegem, "IST-LASAGNE: Towards all-optical label swapping employing optical logic gates and optical flip-flops," J. Lightw. Technol. 23, 2993-3011 (2005).
  5. N. Wada, G. Cincotti, S. Yoshima, N. Kataoka, K.-I. Kitayama, "Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers—Part II: Experiments and applications," J. Lightw. Technol. 24, 113-121 (2006).
  6. A. M. J. Koonen, N. Yan, J. J. V. Olmos, I. T. Monroy, C. Peucheret, E. V. Breusegem, E. Zouganeli, "Label-controlled optical packet routing—technologies and applications," IEEE J. Sel. Top. Quantum Electron. 13, 1540-1550 (2007).
  7. N. Chi, J. Zhang, P. Jeppesen, "All-optical subcarrier labeling based on the carrier suppression of the payload," IEEE Photon. Technol. Lett. 15, 781-783 (2003).
  8. I. M. White, M. S. Rogge, S. Member, K. Shrikhande, L. G. Kazovsky, "A summary of the HORNET project: A next-generation metropolitan area network," IEEE J. Sel. Areas Commun. 21, 1478-1494 (2003).
  9. J. Luo, S. D. Lucente, A. Rohit, S. Zou, K. A. Williams, H. J. S. Dorren, N. Calabretta, "Optical packet switch with distributed control based on inp wavelength-space switch modules," IEEE Photon. Technol. Lett. 24 , 2151-2154 (2012).
  10. S. Di Lucente, J. Luo, R. P. Centelles, A. Rohit, S. Zou, K. a. Williams, H. J. S. Dorren, N. Calabretta, "Numerical and experimental study of a high port-density WDM optical packet switch architecture for data centers," Opt. Exp. 21, 263-269 (2013).
  11. J. Luo, H. J. S. Dorren, N. Calabretta, "Optical RF tone in-band labeling for large-scale and low-latency optical packet switches," J. Lightw. Technol. 30, 2637-2645 (2012).
  12. P. Seddighian, S. Member, S. Ayotte, J. B. Rosas-fernández, S. Larochelle, A. Leon-garcia, L. A. Rusch, S. Member, "Optical packet switching networks with binary multiwavelength labels ," J. Lightw. Technol. 27, 2246-2256 (2009).
  13. N. Calabretta, P. J. Urban, D. H. Geuzebroek, E. J. Klein, H. de Waardt, H. J. S. Dorren, "All-optical label extractor/eraser for in-band labels and 160-Gb/s payload based on microring resonators," IEEE Photon. Technol. Lett. 21, 560-562 (2009 ).
  14. P. De Heyn, B. Kuyken, D. Vermeulen, W. Bogaerts, D. V. Thourhout, "High-performance low-loss silicon-on-insulator microring resonators using TM-polarized light ," Proc. Opt. Fiber Commun. Conf. Expo. Nat. Fiber Opt. Eng. Conf. (2011) pp. OThV.
  15. P. De Heyn, D. Vermeulen, T. Van Vaerenbergh, B. Kuyken, D. Van Thourhout, "Ultra-high Q and finesse all-pass microring resonators on Silicon-on-Insulator using rib waveguides," Proc. 16th Eur. Conf. Integrat. Opt. Techn. Exhib. (2012) pp. 1-2.
  16. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, R. Baets, "Silicon microring resonators ," Laser Photon. Rev. 6, 47-73 (2012).
  17. P. D. Heyn, S. Verstuyft, S. Keyvaninia, A. Trita, D. V. Thourhout, "Tunable 4-channel ultra-dense WDM demultiplexer with III–V photodiodes integrated on silicon-on-insulator," Proc. Asia Commun. Photon. Conf. (2012) pp. 8-10.
  18. J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, H. Dorren, and N. Calabretta, “Quantum dash mode-locked laser based open-loop optical clock recovery for 160-Gb/s transmission system,” in Proc. Opt. Fiber Commun. Conf., 2013.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited