OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 32, Iss. 9 — May. 1, 2014
  • pp: 1674–1681

Direct UV-Imprinting of Hybrid-Polymer Photonic Microring Resonators and Their Characterization

Robert Kirchner, Andreas Finn, Rene Landgraf, Lutz Nueske, Lichao Teng, Marko Vogler, and Wolf-Joachim Fischer

Journal of Lightwave Technology, Vol. 32, Issue 9, pp. 1674-1681 (2014)

View Full Text Article

Acrobat PDF (1662 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The direct patterning of hybrid-polymer microring resonators with minimal residual layers by UV-assisted nanoimprint lithography is reported. The proposed stamp-and-repeat technology requires no post-processing. The imprint polymer was applied by spin-coating as a 130–150 nm thin initial film for an optimized processing. The importance of the initial film thickness is discussed in detail. Aspect ratios of more than 5:1 were realized with 2 µm high ridge-waveguides and sub-400 nm coupling gaps on maximal 130 nm thin residual layers. The achieved ratio of structure height to residual layer thickness of 15.4 (2 µm versus 130 nm) was much larger than the typical values in high-resolution imprinting and superseded the removal of the residual layer completely. The resonators are thought as biosensor transducers. High quality devices with Q-factors up to 13 000 were produced with a minimal set of process steps.

© 2014 IEEE

Robert Kirchner, Andreas Finn, Rene Landgraf, Lutz Nueske, Lichao Teng, Marko Vogler, and Wolf-Joachim Fischer, "Direct UV-Imprinting of Hybrid-Polymer Photonic Microring Resonators and Their Characterization," J. Lightwave Technol. 32, 1674-1681 (2014)

Sort:  Year  |  Journal  |  Reset


  1. European Technology Platform Photonics21, “ Towards 2020—Photonics Driving Economic Growth in Europe (Multiannual Strategic Roadmap 2014-2020),” (2013). [Online]. Available: www.photonics21.org.
  2. B. E. Little, S. T. Chu, W. Pan, Y. Kokubun, "Microring resonator arrays for VLSI photonics," IEEE Photon. Technol. Lett. 12, 323-325 (2000).
  3. C.-Y. Chao, W. Fung, L. J. Guo, "Polymer Microring resonators for biochemical sensing applications," IEEE J. Sel. Topics Quantum Electron. 12, 134-142 (2006).
  4. T. Ling, S.-L. Chen, L. J. Guo, "Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector ," Opt. Exp. 19, 861-869 (2011).
  5. H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Material, processing, and devices," Adv. Mater. 14 , 1339-1365 (2002 ).
  6. S. Y. Chou, P. R. Krauss, P. J. Renstrom, "Imprint of sub-25 nm vias and trenches in polymers," Appl. Phys. Lett. 67, 3114-3116 ( 1995).
  7. J. Haisma, M. Verheijen, K. van den Heuvel, J. van den Berg, "Mold-assisted nanolithography: A process for reliable pattern replication," J. Vac. Sci. Technol. B 14, 4124-4128 (1996).
  8. A. Schleunitz, C. Spreu, M. Vogler, H. Atasoy, and H. Schift, “Combining nanoimprint lithography and a molecular weight selective thermal reflow for the generation of mixed 3D structures,” J. Vac. Sci. Technol. B, vol. 29, no. 6, pp. 06FC01-1–06FC01-4, 2011..
  9. N. Bogdanski, H. Schulz, M. Wissen, H.-C. Scheer, J. Zajadacz, and K. Zimmer, “3D-Hot embossing of undercut structures—An approach to micro-zippers,” Microelectron. Eng., vols. 73/74, pp. 190–195, 2004..
  10. M. B. Christiansen, T. Buss, C. L. C. Smith, S. R. Petersen, M. M. Jorgensen, A. Kristensen, "Single mode dye-doped polymer photonic crystal laser," J. Micromech. Microeng. 20, 115025-1-115025-6 (2010).
  11. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. KumarSelvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets, "Silicon microring resonators ," Laser Photon. Rev. 6, 47-73 (2012).
  12. D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, P. Günter, "High-finesse laterally coupled organic-inorganic hybrid polymer microring resonators for VLSI photonics," IEEE Photon. Technol. Lett. 18, 865-867 (2006).
  13. H.-C. Scheer, H. Schulz, "A contribution to the flow behaviour of thin polymer films during hot embossing lithography," Microelectron. Eng. 56, 311-332 (2001).
  14. L. J. Guo, "Recent progress in nanoimprint technology and its applications," J. Phys. D: Appl. Phys. 37, R123-R141 (2004).
  15. H. Schroeder, J. Bauer, F. Ebling, W. Scheel, "Polymer optical interconnects for PCB," Proc. 1st Int. IEEE Conf. Polym. Adh. Microelectron. Photon. (2001) pp. 337-343.
  16. Y. Ofir, I. W. Moran, C. Subramani, K. R. Carter, V. M. Rotello, "Nanoimprint lithography for functional three-dimensional patterns," Adv. Mater. 22, 3608-3614 (2010).
  17. C. Peroz, S. Dhuey, M. Vogler, Y. Wu, D. Olynick, S. Cabrini, "Step and repeat UV nanoimprint lithography on pre-spin coated resist film: A promising route for fabricating nanodevices," Nanotechnology 21, 445301-1- 445301-5 (2010).
  18. R. Kirchner, L. Nueske, A. Finn, B. Lu, W.-J. Fischer, "Stamp-and-repeat UV-imprinting of spin-coated films: Pre-exposure and imprint defects ," Microelectron. Eng. 97, 117 -121 (2012).
  19. M. Colburn, B. J. Choi, S. Sreenivasan, R. T. Bonnecaze, C. G. Willson, "Ramifications of lubrication theory on imprint lithography," Microelectron. Eng. 75, 321-329 (2004).
  20. H. S. Lee, D. S. Kim, T. H. Kwon, "UV nano embossing for polymer nano structures with non-transparent mold insert," Microsyst. Technol. 13, 593-599 (2007).
  21. R. Kirchner, A. Finn, L. Teng, M. Ploetner, A. Jahn, L. Nueske, W.-J. Fischer, "UV-nanoimprinting using non-transparent molds and non-transparent substrates," Microelectron. Eng. 88, 2004-2008 (2011).
  22. A. Finn, R. Hensel, F. Hagemann, R. Kirchner, A. Jahn, W.-J. Fischer, "Geometrical properties of multilayer nano-imprint-lithography molds for optical applications," Microelectron. Eng. 98, 284-287 (2012 ).
  23. A. Schleunitz and H. Schift, “Fabrication of 3D nanoimprint stamps with continuous reliefs using dose-modulated electron beam lithography and thermal reflow,” J. Micromech. Microeng., vol. 20, pp. 095002-1–095002-6, 2010..
  24. M. Köfferlein. KLayout—High performance layout viewer and editor. (2013). [Online]. Available: http://www.klayout.de.
  25. R. Landgraf, T. Haugwitz, R. Kirchner, A. Finn, W.-J. Fischer, "Planar optical waveguide design for UV-nanoimprinted microring resonator based biosensors ," Proc. IEEE Sens. (2011) pp. 596 -599.
  26. M. V. Bazylenko, M. Gross, "Reactive ion etching of silica structures for integrated optics applications ," J. Vac. Sci. Technol. A 14, 2994-3003 (1996).
  27. D. Nilsson, S. Jensen, A. Menon, "Fabrication of silicon molds for polymer optics," J. Micromech. Microeng. 13, S57-S61 (2003).
  28. R. Kirchner, L. Teng, B. Lu, B. Adolphi, and W.-J. Fischer, “Degradation of perfluorotrichlorosilane antisticking layers: The impact on mold cleaning, UV-Nanoimprinting, and bonded UV-nanoimprint molds,” Jpn. J. Appl. Phys., vol. 50, pp. 06GK13-1–06GK13-8, 2011..
  29. Micro Resist Technology GmbH, Processing Guidelines: OrmoCore, 2011..
  30. R. Kirchner, A. Finn, R. Landgraf, L. Nueske, M. Vogler, W.-J. Fischer, "UV-based nanoimprint lithography: Towards direct patterning of functional polymers," J. Photopolym. Sci. Technol. 25, 197-206 (2012).
  31. M. Otto, M. Bender, B. Hadam, B. Spangenberg, H. Kurz, " Characterization and application of a UV-based imprint technique," Microelectron. Eng. 57--58, 361-366 ( 2001).
  32. S. Reddy, R. T. Bonnecaze, "Simulation of fluid flow in the step and flash imprint lithography process ," Microelectron. Eng. 82, 60 -70 (2005).
  33. H. Schift, A. Kristensen, Springer Handbook of Nanotechnology (Springer-Verlag , 2007) pp. 239-278.
  34. M. Colburn, I. Suez, B. J. Choi, M. Meissl, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, "Characterization and modelling of volumetric and mechanical properties for step and flash imprint lithography polymers," J. Vac. Sci. Technol. B 19, 2685-2689 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited