OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 9 — May. 1, 2014
  • pp: 1682–1688

Microfiber-Enabled In-line Fabry–Pérot Interferometer for High-Sensitive Force and Refractive Index Sensing

Shecheng Gao, Weigang Zhang, Zhi-Yong Bai, Hao Zhang, Wei Lin, Li Wang, and Jieliang Li

Journal of Lightwave Technology, Vol. 32, Issue 9, pp. 1682-1688 (2014)


View Full Text Article

Acrobat PDF (843 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A microfiber-enabled Fabry–Pérot interferometer (FPI) constructed by splicing a section of microfiber between two cleaved standard single-mode fibers (SMFs) with unique relative fiber cross section relationship has been proposed and experimentally demonstrated. The opening air cavity between the two SMF ends connected by the microfiber serves as an FP cavity and also a direct sensing head. The sensing characteristics of the FPIs with different cavity lengths and microfiber diameters have been studied. A force sensitivity as high as 167.41 nm/N (∼200 pm/μϵ) and a high refractive index (RI) sensitivity of 1330.8 nm/RIU (around a RI of 1.33) have been achieved by using the microfiber-based FPI with ∼21 μm cavity length and ∼44 μm microfiber diameter. Such a device has several merits such as simple configuration, compactness and reliability in operation owing to the extremely low thermal cross-sensitivities.

© 2014 IEEE

Citation
Shecheng Gao, Weigang Zhang, Zhi-Yong Bai, Hao Zhang, Wei Lin, Li Wang, and Jieliang Li, "Microfiber-Enabled In-line Fabry–Pérot Interferometer for High-Sensitive Force and Refractive Index Sensing," J. Lightwave Technol. 32, 1682-1688 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-9-1682


Sort:  Year  |  Journal  |  Reset

References

  1. M. S. Yoon, H. J. Kim, S. J. Kim, Y. G. Han, "Influence of the waist diameters on transmission characteristics and strain sensitivity of microtapered long-period fiber gratings," Opt. Lett. 38, 2669-2672 (2013).
  2. W. Luo, J. l. Kou, Y. Chen, F. Xu, Y. Q. Lu, "Ultra-highly sensitive surface-corrugated microfiber Bragg grating force sensor," Appl. Phys. Lett. 101, 133502-1-133502-4 (2012).
  3. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. Pavan Kumar, E. Marin, J. P. Meunier, "Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures," J. Lightw. Technol. 27, 2348-2356 (2009).
  4. Q. Wu, Y. Semenova, P. Wang, G. Farrell, "High sensitivity SMS fiber structure based refractometer-analysis and experiment ," Opt. Exp. 19, 7937-7944 (2011).
  5. M. S. Ferreira, J. M. Baptista, P. Roy, R. Jamier, S. Fevrier, O. Frazao, "Highly birefringent photonic bandgap Bragg fiber loop mirror for simultaneous measurement of strain and temperature," Opt. Lett. 36, 993-995 (2011).
  6. C. Zhong, C. Shen, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, "A polarization-maintaining fiber loop mirror based sensor for liquid refractive index absolute measurement," Sensors Actuators B 168, 360-364 (2012).
  7. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, H. Y. Choi, "Interferometric fiber optic sensors," Sensors 12 , 2467-2486 (2012).
  8. S. Gao, W. Zhang, H. Zhang, P. Geng, W. Lin, B. Liu, Z. Bai, X. Xue, "Fiber modal interferometer with embedded fiber Bragg grating for simultaneous measurements of refractive index and temperature," Sensors Actuators B 188, 931-936 (2013).
  9. C. R. Liao, D. N. Wang, Ying Wang, "Microfiber in-line Mach-Zehnder interferometer for strain sensing," Opt. Lett. 38, 757-759 (2013).
  10. R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, H. B. Sun, "S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain," J. Lightw. Technol. 30, 3126-3132 (2012).
  11. Y. Liu, S. Qu, Y. Li, "Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown," Opt. Lett. 38, 335-337 (2013).
  12. J. Zhang, Q. Sun, R. Liang, J. Wo, D. Liu, P. Shum, "Microfiber Fabry-Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor ," Opt. Lett. 37, 2925-2927 (2012).
  13. S. Pevec, D. Donlagic, "Nanowire-based refractive index sensor on the tip of an optical fiber," Appl. Phys. Lett. 102, 213114-1-213114-4 (2013).
  14. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, H. Y. Tam, " High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber ," Opt. Lett. 36, 412-414 (2011).
  15. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, "Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors ," Opt. Lett. 16, 274-275 (1991).
  16. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, E. J. Friebele, "In-line fiber etalon for strain measurement," Opt. Lett. 18, 1973-1975 (1993).
  17. Y. J. Rao, T. Zhu, X. C. Yang, D. W. Duan, "In-line fiber-optic etalon formed by hollow-core photonic crystal fiber ," Opt. Lett. 32, 2662-2664 (2007).
  18. M. S. Ferreira, J. Bierlich, J. Kobelke, K. Schuster, J. L. Santos, O. Frazao, "Towards the control of highly sensitive Fabry-Perot strain sensor based on hollow-core ring photonic crystal fiber," Opt. Exp. 20, 21946-21952 (2012).
  19. J. Villatoro, V. Finazzi, G. Coviello, V. Pruneri, "Photonic-crystal-fiber enabled micro-Fabry-Perot interferometer ," Opt. Lett. 34, 2441-2443 (2009).
  20. T. Han, Y. Liu, Z. Wang, Z. Wu, S. Wang, S. Li, "Simultaneous temperature and force measurement using Fabry-Perot interferometer and bandgap effect of a fluid-filled photonic crystal fiber," Opt. Exp. 20, 13320-13325 (2012).
  21. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, V. Pruneri, "Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing," Opt. Exp. 20 , 7112-7118 (2012).
  22. Y. Rao, M. Deng, D. Duan, X. Yang, T. Zhu, G. Cheng, "Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser," Opt. Exp. 15, 14123-14128 (2007 ).
  23. T. Wei, Y. Han, H. Tsai, H. Xiao, "Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement," Opt. Exp. 16 , 5764-5769 (2008).
  24. J. Kou, J. Feng, Q. Wang, F. Xu, Y. Lu, " Microfiber-probe-based ultrasmall interferometric sensor," Opt. Lett. 35, 2308-2310 (2010).
  25. J. Kou, J. Feng, L. Ye, F. Xu, Y. Lu, "Miniaturized fiber taper reflective interferometer for high temperature measurement," Opt. Exp. 18, 14245-14250 (2010).
  26. T. Wei, Y. Han, H. L. Tsai, H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser," Opt. Lett. 33, 536-538 (2008).
  27. C. R. Liao, T. Y. Hu, D. N. Wang, "Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing ," Opt. Exp. 20, 22813-22818 (2012).
  28. Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, H. Wei, "Temperature-insensitive refractive index sensing by use of micro Fabry-Perot cavity based on simplified hollow-core photonic crystal fiber," Opt. Lett. 38, 269-271 (2013).
  29. L. Zhang, J. Lou, L. Tong, "Micro/nanofiber optical sensors ," Photon. sensors 1, 31-42 (2011).
  30. C. R. Liao, D. N. Wang, Y. Wang, "Microfiber in-line Mach-Zehnder interferometer for strain sensing," Opt. Lett. 38, 757-760 (2013).
  31. G. Y. Chen, M. Ding, T. P. Newson, G. Brambilla, "A review of microfiber and nanofiber based optical sensors ," The Open Opt. J. 7, 21-57 (2013).
  32. S. Gao, W. Zhang, P. Geng, X. Xue, H. Zhang, Z. Bai, "Highly sensitive in-fiber refractive index sensor based on down-bitaper seeded up-bitaper pair," IEEE Photon. Technol. Lett. 24, 1878-1881 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited