OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 9 — May. 1, 2014
  • pp: 1689–1700

Analysis of SBS Gain Shaping and Threshold Increase by Arbitrary Strain Distributions

Rainer Engelbrecht

Journal of Lightwave Technology, Vol. 32, Issue 9, pp. 1689-1700 (2014)


View Full Text Article

Acrobat PDF (1673 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Fibers with a longitudinal strain distribution can be used to shape the stimulated Brillouin scattering (SBS) gain spectrum or to increase the SBS threshold power. Theoretical analysis and experimental results on the SBS gain spectrum of coiled fibers with a continuous and arbitrary distribution of longitudinal strain are presented. The concept of a critical gain factor for determining the SBS threshold power with a simple formula is reviewed for fibers with different parameters and spectral shapes. A fiber coiling machine for high coiling forces is described for realizing permanent strain distributions with a maximum strain of more than 3%. SBS spectra were broadened to a spectral width of 1.7 GHz. Measurements verify a significant SBS gain suppression by a factor of 40, which is in excellent agreement with the theoretical analysis. Finally, synthetic triangular and broadened Lorentzian SBS spectral shapes with a spectral width of 550 MHz are demonstrated. The results can be used to suppress SBS in high-power fiber lasers and amplifiers or to tailor almost any arbitrary SBS spectral shapes, which could be useful for slow-light or active optical filter applications.

© 2014 IEEE

Citation
Rainer Engelbrecht, "Analysis of SBS Gain Shaping and Threshold Increase by Arbitrary Strain Distributions," J. Lightwave Technol. 32, 1689-1700 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-9-1689


Sort:  Year  |  Journal  |  Reset

References

  1. E. Ippen, R. Stolen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett. 21, 539-541 (1972).
  2. A. Kobyakov, M. Sauer, D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 ( 2010).
  3. G. Agrawal, Nonlinear Fiber Optics (Academic , 2013).
  4. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  5. R. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt. 11, 2489-2494 (1972).
  6. D. Cotter, "Stimulated Brillouin scattering in monomode optical fiber ," J. Opt. Commun. 4, 10-19 (1983).
  7. J. Marconi, J. Boggio, H. L. Fragnito, "Narrow linewidth fibre-optical wavelength converter with strain suppression of SBS," Electron. Lett 40, 1213-1214 (2004).
  8. S. Radic, "Parametric amplification and processing in optical fibers ," Laser Photon. Rev. 2, 498-513 (2008).
  9. Z. Tong, C. Lundström, P. Andrekson, M. Karlsson, A. Bogris, "Ultralow noise, broadband phase-sensitive optical amplifiers, and their applications," IEEE J. Sel. Topics Quantum Electron. 18, 1016-1032 (2012).
  10. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, A. Tünnermann, "The rising power of fiber lasers and amplifiers ," IEEE J. Sel. Topics Quantum Electron. 13, 537-545 (2007 ).
  11. J. E. Rothenberg, P. A. Thielen, M. Wickham, C. P. Asman, "Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers," Proc. SPIE 6873: Conf. Fiber Lasers V (2008 ) pp. 68730O-1-68730O-7.
  12. L. Zhang, S. Cui, C. Liu, J. Zhou, Y. Feng, " 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier," Opt. Exp. 21, 5456-5462 (2013).
  13. L. Zhang, J. Hu, J. Wang, Y. Feng, "Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star ," Opt. Lett. 37, 4796-4798 (2012).
  14. D. Fishman, J. Nagel, "Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems," J. Lightw. Technol. 11, 1721-1728 (1993).
  15. F. Willems, W. Muys, J. S. Leong, "Simultaneous suppression of stimulated Brillouin scattering and interferometric noise in externally modulated lightwave AM-SCM systems ," IEEE Photon. Technol. Lett. 6, 1476-1478 (1994).
  16. J. Hansryd, P. Andrekson, "Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency," IEEE Photon. Technol. Lett. 13 , 194-196 (2001).
  17. S. Radic, C. McKinstrie, R. Jopson, J. C. Centanni, A. Chraplyvy, C. G. Jorgensen, K. Brar, C. Headley, "Selective suppression of idler spectral broadening in two-pump parametric architectures ," IEEE Photon. Technol. Lett. 15, 673-675 (2003).
  18. N. Yoshizawa, T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," J. Lightw. Technol. 11, 1518-1522 (1993 ).
  19. R. Engelbrecht, M. Bayer, and L.-P. Schmidt, “Numerical calculation of stimulated Brillouin scattering and its suppression in Raman fiber amplifiers,” presented at the Conf. Lasers Electro-Opt. Eur., Munich, Germany, Jun. 2003..
  20. R. Engelbrecht, J. Hagen, M. Schmidt, " SBS-suppression in variably strained fibers for fiber-amplifiers and fiber-lasers with a high spectral power density ," Proc. SPIE 5777: XV Int. Symp. GCL/HPL (2005) pp. 795-798.
  21. J. M. C. Boggio, J. D. Marconi, H. L. Fragnito, " Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions," J. Lightw. Technol. 23, 3808-3814 (2005 ).
  22. C. Lundström, R. Malik, L. Gruner-Nielsen, B. Corcoran, S. Olsson, M. Karlsson, P. Andrekson, "Fiber optic parametric amplifier with 10-dB net gain without pump dithering," IEEE Photon. Technol. Lett. 25, 234-237 (2013).
  23. J. Hansryd, F. Dross, M. Westlund, P. Andrekson, S. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightw. Technol. 19, 1691-1697 (2001 ).
  24. M. Lorenzen, D. Noordegraaf, C. Nielsen, O. Odgaard, L. Gruner-Nielsen, K. Rottwitt, " Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation," Electron. Lett 45, 125-126 (2009).
  25. A. Evert, A. James, T. Hawkins, P. Foy, R. Stolen, P. Dragic, L. Dong, R. Rice, J. Ballato, "Longitudinally-graded optical fibers," Opt. Exp. 20, 17393-17401 (2012).
  26. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. Bickham, R. Mishra, "Design concept for optical fibers with enhanced SBS threshold ," Opt. Exp 13, 5338-5346 (2005).
  27. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, "Al/Ge co-doped large mode area fiber with high SBS threshold ," Opt. Exp. 15, 8290-8299 (2007).
  28. S. Gray, D. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. Ruffin, J. DeMeritt, L. Zenteno, "Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power, single-frequency sources," IEEE J. Sel. Topics Quantum Electron. 15, 37-46 (2009).
  29. Y. Takushima, T. Okoshi, "Suppression of stimulated Brillouin scattering using optical isolators ," Electron. Lett. 28, 1155-1157 (1992).
  30. H. Lee, G. Agrawal, "Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings ," Opt. Exp. 11, 3467-3472 (2003).
  31. P. Weßels, P. Adel, M. Auerbach, D. Wandt, C. Fallnich, "Novel suppression scheme for Brillouin scattering," Opt. Exp. 12, 4443-4448 (2004).
  32. M. Tateda, T. Horiguchi, T. Kurashima, K. Ishihara, "First measurement of strain distribution along field-installed optical fibers using Brillouin spectroscopy," J. Lightw. Technol. 8, 1269-1272 (1990).
  33. M. Niklès, L. Thévenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).
  34. X. Bao, L. Chen, "Recent progress in Brillouin scattering based fiber sensors," Sensors 11, 4152-4187 (2011).
  35. T. Tanemura, Y. Takushima, K. Kikuchi, "Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber ," Opt. Lett. 27, 1552-1554 (2002).
  36. J. M. Subias Domingo, J. Pelayo, F. Villuendas, C. D. Heras, E. Pellejer, "Very high resolution optical spectrometry by stimulated Brillouin scattering ," IEEE Photon. Technol. Lett. 17, 855-857 (2005).
  37. M. González-Herráez, K.-Y. Song, L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering ," Appl. Phys. Lett. 87, (2005 ).
  38. M. G. Herráez, K. Y. Song, L. Thévenaz, " Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Exp. 14, 1395-1400 (2006).
  39. T. Schneider, R. Henker, K.-U. Lauterbach, M. Junker, "Adapting Brillouin spectrum for slow light delays ," Electron. Lett 43, 682-683 (2007).
  40. L. Thévenaz, "Slow and fast light in optical fibres ," Nature Photon. 2, 474-481 (2008).
  41. N. Shibata, K. Okamoto, Y. Azuma, "Longitudinal acoustic modes and Brillouin-gain spectra for GeO $_2$ -doped-core single-mode fibers ," J. Opt. Soc. Amer. B 6, 1167-1174 (1989).
  42. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15, 1157-1160 (1979 ).
  43. M. van Deventer, A. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers ," J. Lightw. Technol. 12, 585-590 (1994).
  44. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, M. Tur, " Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers," Opt. Exp. 16, 21692-21707 (2008).
  45. L. Ursini, M. Santagiustina, L. Palmieri, "Polarization-dependent Brillouin gain in randomly birefringent fibers," IEEE Photon. Technol. Lett. 22, 712-714 (2010).
  46. P. D. Dragic, "The acoustic velocity of Ge-doped silica fibers: A comparison of two models," Int. J. Appl. Glass Sci. 1, 330-337 (2010).
  47. A. Kobyakov, S. Darmanyan, D. Chowdhury, "Exact analytical treatment of noise initiation of SBS in the presence of loss," Opt. Commun. 260, 46-49 (2006).
  48. C. Lee, S. Chi, "Measurement of stimulated-Brillouin-scattering threshold for various types of fibers using brillouin optical-time-domain reflectometer," IEEE Photon. Technol. Lett. 12 , 672-674 (2000).
  49. P. Bayvel, P. M. Radmore, "Solutions of the SBS equations in single mode optical fibres and implications for fibre transmission systems," Electron. Lett. 26, 434-436 (1990).
  50. S. Le Floch, P. Cambon, "Theoretical evaluation of the Brillouin threshold and the steady-state Brillouin equations in standard single-mode optical fibers," J. Opt. Soc. Amer. A 20, 1132-1137 (2003).
  51. T. Horiguchi, T. Kurashima, M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
  52. D. Culverhouse, F. Farahi, C. Pannell, D. Jackson, "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-915 (1989).
  53. R. Tkach, A. Chraplyvy, R. Derosier, "Spontaneous Brillouin scattering for single-mode optical-fibre characterisation," Electron. Lett. 22, 1011-1013 (1986).
  54. N. Shibata, R. G. Waarts, R. P. Braun, "Brillouin-gain spectra for single-mode fibers having pure-silica, GeO $_2$ -doped, and P $_2$ O $_5$ -doped cores," Opt. Lett. 12, 269-271 (1987).
  55. T. R. Parker, M. Farhadiroushan, V. A. Handerek, A. J. Rogers, "Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers," Opt. Lett. 22, 787-789 (1997).
  56. T. Kurashima, M. Tateda, "Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers ," Appl. Opt. 29, 2219-2222 (1990).
  57. K. Brown, A. W. Brown, B. G. Colpitts, "Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor," Opt. Fiber Technol. 11, 131- 145 (2005).
  58. K. Shiraki, M. Ohashi, M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," J. Lightw. Technol. 14 , 50-57 (1996).
  59. R. Engelbrecht, M. Müller, B. Schmauss, "SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine," Proc. IEEE/LEOS Winter Topicals (2009) pp. 248-249.
  60. H. Naruse, M. Tateda, H. Ohno, A. Shimada, "Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors," Appl. Opt. 41, 7212-7217 (2002).
  61. Y. Hayase and H. Naruse, “Shape variation of Brillouin gain spectrum caused by sinusoidal-like strain distribution,” presented at the CLEO/Pacific Rim, Kyoto, Japan, 2013, Paper WPF-19..
  62. F. Mallinder, B. Proctor, "Elastic constants of fused silica as a function of large tensile strain ," Phys. Chem. Glasses 5, 91-103 (1964).
  63. G. S. Glaesemann, S. T. Gulati, and J. D. Helfinstine, “Effect of strain and surface composition on Young’s modulus of optical fibers,” presented at the Tech. Dig. Opt. Fiber Commun. Conf., New Orleans, LA, USA, Feb. 1988, Paper TuG5..
  64. E. Suhir, "Predicted stresses and strains in fused biconical taper couplers subjected to tension," Appl. Opt. 32, 3237-3240 (1993 ).
  65. S. C. Rashleigh, R. Ulrich, "High birefringence in tension-coiled single-mode fibers," Opt. Lett. 5, 354-356 (1980).
  66. K. Byron, M. Bedgood, A. Finney, C. McGauran, S. Savory, I. Watson, "Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres," Electron. Lett. 28, 1712- 1714 (1992).
  67. E. Myslivets, C. Lundstrom, J. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. Andrekson, S. Radic, "Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers," IEEE Photon. Technol. Lett. 21, 1807-1809 (2009).
  68. M. Takahashi, M. Tadakuma, T. Yagi, "Dispersion and brillouin managed HNLFs by strain control techniques," J. Lightw. Technol. 28, 59-64 (2010).
  69. C. Lundström, E. Myslivets, A. O. Wiberg, N. Alic, S. Radic, M. Karlsson, and P. A. Andrekson, “Tension-optimized highly nonlinear fiber for parametric applications,” presented at the Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, Sep. 2012, Paper We.1.F.2..

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited