OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 9 — May. 1, 2014
  • pp: 1701–1707

Electromagnetically Induced Transparency-Like Transmission in a Compact Side-Coupled T-Shaped Resonator

Kunhua Wen, Lianshan Yan, Wei Pan, Bin Luo, Zhen Guo, Yinghui Guo, and Xiangang Luo

Journal of Lightwave Technology, Vol. 32, Issue 9, pp. 1701-1707 (2014)


View Full Text Article

Acrobat PDF (727 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A plasmonic bus waveguide with a side-coupled T-shaped (TS) or a reverse T-shaped (RTS) resonator consisting of a parallel and a perpendicular cavities is proposed. The compact configuration could serve as a wavelength demultiplexing device as a forbidden band is achieved based on the symmetric distribution of resonators. By shifting one cavity away from the center of the resonator, the system exhibits electromagnetically induced transparency (EIT) like transmission at the wavelength of the former forbidden band. The electromagnetic responses of the structure could be handled with certain flexibility by changing the asymmetric behavior of the TS or RTS resonator. Similar characteristics for two proposed structures could be obtained except for the center wavelength that is determined by the two cavities in the RTS resonator or by the cavity parallel to the bus waveguide in the TS resonator.

© 2014 IEEE

Citation
Kunhua Wen, Lianshan Yan, Wei Pan, Bin Luo, Zhen Guo, Yinghui Guo, and Xiangang Luo, "Electromagnetically Induced Transparency-Like Transmission in a Compact Side-Coupled T-Shaped Resonator," J. Lightwave Technol. 32, 1701-1707 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-9-1701


Sort:  Year  |  Journal  |  Reset

References

  1. M. Fleischhauer, A. Imamoglu, J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
  2. R. W. Boyd, D. J. Gauthier, "Photonics: Transparency on an optical chip," Nature 441, 701-702 (2006).
  3. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett. 102, 053901 (2009).
  4. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Phys. Rev. B 80 , 153103 (2009 ).
  5. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, "Planar designs for electromagnetically induced transparency in metamaterials," Opt. Exp. 17, 5595-5605 (2009).
  6. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys. 7 , 1-15 (2005).
  7. K. Aydin, I. M. Pryce, H. A. Atwater, "Symmetry breaking and strong coupling in planar optical metamaterials," Opt. Exp. 18, 13407-13417 ( 2010).
  8. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, " Plasmon-induced transparency in metamaterials," Phys. Rev. Lett. 101, 047401 (2008 ).
  9. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett. 10, 1103-1107 (2010).
  10. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, R. W. Boyd, "Coupled resonator induced transparency," Phys. Rev. A 69, 063804 (2004).
  11. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett. 96, 123901 (2006).
  12. R. D. Kekatpure, E. S. Barnard, W. Cai, M. L. Brongersma, "Phase-coupled plasmon induced transparency ," Phys. Rev. Lett. 104, 243902 (2010).
  13. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics ," Nature 424, 824-830 (2003).
  14. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators ," Nature 440, 508-511 (2006).
  15. R. Zia, J. A. Schuller, A. Chandran, M. L. Brongersma, "Plasmonics: The next chip-scale technology," Mater. Today 9, 20-27 (2006).
  16. K.-H. Wen, L.-S. Yan, W. Pan, B. Luo, Z. Guo, Y.-H. Guo, "A four-port plasmonic quasi-circulator based on metal-insulator-metal waveguides," Opt. Exp. 20, 28025-28032 ( 2012).
  17. B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, N. P. Johnson, "Magnetic response of split ring resonators (SRRs) at visible frequencies," Opt. Exp. 18, 3210-3218 (2010).
  18. P. Gay-Balmaz, O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys. 92, 2929 -2935 (2002).
  19. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004).
  20. B. Kanté, A. de Lustrac, J. M. Lourtioz, "In-plane coupling and field enhancement in infrared metamaterial surfaces," Phys. Rev. B 80, 035108 (2009).
  21. I. Chremmos, "Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal," J. Opt. Soc. Amer. A 26, 2623-2633 (2009).
  22. H. Lu, X. M. Liu, D. Mao, Y. K. Gong, G. X. Wang, "Induced transparency in nanoscale plasmonic resonator systems," Opt. Lett. 36, 3233-3235 (2011).
  23. Z. H. Han, S. I. Bozhevolnyi, "Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices," Opt. Exp. 19, 3251-3257 (2011).
  24. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006).
  25. S. I. Bozhevolnyi, J. Jung, "Scaling for gap plasmon based waveguides," Opt. Exp. 16, 2676-2684 (2008).
  26. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  27. F. F. Hu, H. X. Yi, Z. P. Zhou, "Wavelength demultiplexing structure based on arrayed plasmonic slot cavities," Opt. Lett. 36, 1500-1502 (2011).
  28. J. S. White, G. Veronis, Z. F. Yu, E. S. Barnard, A. Chandran, S. H. Fan, M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009).
  29. Q. Li, T. Wang, Y. K. Su, M. Yan, M. Qiu, "Coupled mode theory analysis of mode-splitting in coupled cavity system," Opt. Exp. 18, 8367-8382 (2010).
  30. X. Zou, M. Li, W. Pan, L. Yan, J. Aza $\tilde{n}$ a, and J. Yao, “All-fiber optical filter with an ultra-narrow and rectangular spectral response,” Opt. Lett., vol. 38, no. 16, pp. 3096–3098, Aug. 2013..
  31. X. Zou, W. Li, W. Pan, L. Yan, and J. Yao, “Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 9, pp. 3470–3478, Sep. 2013..

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited