OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 9 — May. 1, 2014
  • pp: 1717–1725

Hollow Core Bragg Fibers With a Heterostructured Cladding Based on Ternary One-Dimensional Photonic Crystal for Mid-infrared Broadband and Low-Loss Transmission

Liang Shang, Xiuqin Yang, Yunjie Xia, and Hengliang Wang

Journal of Lightwave Technology, Vol. 32, Issue 9, pp. 1717-1725 (2014)


View Full Text Article

Acrobat PDF (1193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose a hollow core Bragg fiber (HC-BF) with a heterostructured cladding based on the ternary 1-D photonic crystal (T-1DPC) in this paper. The distinguishing ternary unit cell of T-1DPC is formed from a polyetherimide (PEI) layer sandwiched by two As $_{2}$ Se $_{3}$ layers of the same thickness. We demonstrate its capability for mid-infrared broadband and low-loss transmission by numerically simulating and analyzing the omnidirectional photonic bandgap (OPBG) and the modal loss characteristics. The results show that the T-1DPC-based heterostructured cladding can effectively broaden the OPBG, which is only due to the blue-shift of the lower bandgap edge wavelength. Compared with that for the binary-1DPC-based HC-BF, the transmission loss for the T-1DPC-based HC-BF can be reduced by three orders of magnitude over most of the OPBG range. The large loss contrast is essentially attributed to the enhancement of the multilayer reflection from the T-1DPC-based cladding. Most notably, for a T-1DPC-based cladding with three groups, the transmission band with loss lower than 0.01 dB/m for the HE $_{11}$ mode can cover almost the whole 3 to 5 μm range, with the exception of several loss peaks near the short-wavelength edge. Even with the cladding material absorption included, the transmission loss for the HE $_{11}$ mode in the T-1DPC-based HC-BF can be still lower than 0.1 dB/m over the whole OPBG range.

© 2014 IEEE

Citation
Liang Shang, Xiuqin Yang, Yunjie Xia, and Hengliang Wang, "Hollow Core Bragg Fibers With a Heterostructured Cladding Based on Ternary One-Dimensional Photonic Crystal for Mid-infrared Broadband and Low-Loss Transmission," J. Lightwave Technol. 32, 1717-1725 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-9-1717


Sort:  Year  |  Journal  |  Reset

References

  1. I. Vurgaftman, W. W. Bewley, C. L. Canedy, C. S. Kim, J. R. Lindle, C. D. Merritt, J. Abell, J. R. Meyer, "Mid-IR type-II interband cascade lasers," IEEE J. Sel. Topics Quantum Electron. 17, 1435-1444 ( 2011).
  2. J. Chang, C. Zhang, Z. Tao, Y. Ge, T. Wang, " Multiwavelength midinfrared difference frequency generation based on a uniform grating periodically poled lithium niobate," Opt. Eng. 52, 096107 (2013).
  3. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, "Supercontinuum generation spanning over three octaves from UV to 3.85 um in a fluoride fiber," Opt. Lett. 34, 2015 -2017 (2009).
  4. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, J. S. Sanghera, "All-fiber chalcogenide-based mid-infrared supercontinuum source," Opt. Fiber. Technol. 18 , 345-348 (2012).
  5. J. A. Harrington, "A review of IR transmitting hollow waveguides ," Fiber Integr. Opt. 19, 211 -227 (2000).
  6. N. Croitoru, A. Inberg, M. Ben-David, I. Gannot, "Broad band and low loss mid-IR flexible hollow waveguides ," Opt. Exp. 12, 1341-1352 (2004).
  7. P. St. J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).
  8. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink, " Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO $_{2}$ laser transmission," Nature 420, 650-653 (2002).
  9. H. Qu, M. Skorobogatiy, "Liquid-core low-refractive-index-contrast Bragg fiber sensor," Appl. Phys. Lett. 98, 201114 (2011).
  10. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 ( 1998).
  11. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Exp. 9, 748-779 (2001 ).
  12. G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. B. Jensen, T. Sørensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Exp. 12, 3500-3508 (2004).
  13. S. Ghosh, R. K. Varshney, B. P. Pal, G. Monnom, "A Bragg-like chirped clad all-solid microstructured optical fiber with ultra-wide bandwidth for short pulse delivery and pulse reshaping," Opt. Quantum Electron. 42, 1-14 (2010).
  14. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, G. Steinmeyer, "A chirped photonic-crystal fibre," Nature Photon. 2, 679-683 (2008).
  15. A. Husakou, J. Herrmann, "Chirped multilayer hollow waveguides with broadband transmission," Opt. Exp. 17, 3016-3024 (2009).
  16. L. Shang, L. Zhang, " Enlargement of omnidirectional bandgap in a hollow core Bragg fiber with linearly-chirped multilayered cladding for mid-infrared multicomponent trace-gas detection," Opt. Commun. 301–302, 78-83 (2013).
  17. D. J. J. Hu, G. Alagappan, Y. Yeo, P. P. Shum, P. Wu, "Broadband transmission in hollow-core Bragg fibers with geometrically distributed multilayered cladding," Opt. Exp. 18, 18671-18684 (2010).
  18. L. Shi, W. Zhang, J. Jin, Y. Huang, J. Peng, " Multi-wavelength transmission of hollow-core Bragg fiber with modified binary one-dimensional photonic crystal cladding ," J. Lightw. Technol. 30, 1492 -1498 (2012).
  19. S. K. Awasthi, U. Malaviya, S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Amer. B 23, 2566-2571 (2006).
  20. O. Shapira, K. Kuriki, N. D. Orf, A. F. Abouraddy, G. Benoit, J. F. Viens, A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, Y. Fink, "Surface-emitting fiber lasers," Opt. Exp. 14, 3929-3935 ( 2006).
  21. D. Lusk, I. Abdulhalim, F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal," Opt. Commun. 198, 273-279 (2001).
  22. Y. H. Lu, M. D. Huang, S. Y. Park, P. J. Kim, Y. P. Lee, J. Y. Rhee, C. K. Hwangbo, L. Y. Chen, "Fabrication and analysis of one-dimensional defect-induced ultrawide photonic band gaps," J. Appl. Phys. 101, 103103 (2007).
  23. M. Miyagi, "Waveguide-loss evaluation in circular hollow waveguides and its ray-optical treatment," J. Lightw. Technol. LT-3, 303-307 (1985).
  24. M. Ibanescu, S. G. Johnson, M. Soljačić, J. D. Joannopoulos, Y. Fink, "Analysis of mode structure in hollow dielectric waveguide fibers," Phy. Rev. E 67, 046608 (2003).
  25. Y. Zhang, I. D. Robertson, "Analysis and design of Bragg fibers using a novel confinement loss diagram approach," J. Lightw. Technol. 28, 3197-3206 (2010).
  26. K. S. Wu, J. W. Dong, H. Z. Wang, "Phase engineering of one-dimensional defective photonic crystal and applications," Appl. Phys. B 91 , 145-148 (2008).
  27. K. J. Rowland, S. Afshar, V. A. Stolyarov, Y. Fink, T. M. Monro, "Bragg waveguides with low-index liquid cores," Opt. Exp. 20, 48-62 (2011).
  28. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Exp. 12, 1510 -1517 (2004).
  29. Y. Zhang, I. D. Robertson, "Single-mode terahertz Bragg fiber design using a modal filtering approach," IEEE Trans. Microw. Theory Tech. 58, 1985-1992 (2010).
  30. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, Y. Fink, "Complete modal decomposition for optical waveguides," Phys. Rev. Lett. 94, 143902 (2005).
  31. K. J. Rowland, S. Afshar V., T. M. Monro, "Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model," Opt. Exp. 16 , 17935-17951 (2008).
  32. G. Xu, W. Zhang, Y. Huang, J. Peng, "Loss characteristics of single-HE $_{11}$ -mode Bragg fiber," J. Lightw. Technol. 25, 359-366 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited