OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 32, Iss. 9 — May. 1, 2014
  • pp: 1807–1813

Visible Light Communications: 170 Mb/s Using an Artificial Neural Network Equalizer in a Low Bandwidth White Light Configuration

Paul Anthony Haigh, Zabih Ghassemlooy, Sujan Rajbhandari, Ioannis Papakonstantinou, and Wasiu Popoola

Journal of Lightwave Technology, Vol. 32, Issue 9, pp. 1807-1813 (2014)


View Full Text Article

Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we experimentally demonstrate for the first time an on off keying modulated visible light communications system achieving 170 Mb/s using an artificial neural network (ANN) based equalizer. Adaptive decision feedback (DF) and linear equalizers are also implemented and the system performances are measured using both real time (TI TMS320C6713 digital signal processing board) and offline (MATLAB) implementation of the equalizers. The performance of each equalizer is analyzed in this paper using a low bandwidth (4.5 MHz) light emitting diode (LED) as the transmitter and a large bandwidth (150 MHz) PIN photodetector as the receiver. The achievable data rates using the white spectrum are 170, 90, 40 and 20 Mb/s for ANN, DF, linear and unequalized topologies, respectively. Using a blue filter to isolate the fast blue component of the LED (at the cost of the power contribution of the yellowish wavelengths) is a popular method of improving the data rate. We further demonstrate that it is possible to sustain higher data rates from the white light with ANN equalization than the blue component due to the high signal-to-noise ratio that is obtained from retaining the yellowish wavelengths. Using the blue component we could achieve data rates of 150, 130, 90 and 70 Mb/s for the same equalizers, respectively.

© 2014 Crown

Citation
Paul Anthony Haigh, Zabih Ghassemlooy, Sujan Rajbhandari, Ioannis Papakonstantinou, and Wasiu Popoola, "Visible Light Communications: 170 Mb/s Using an Artificial Neural Network Equalizer in a Low Bandwidth White Light Configuration," J. Lightwave Technol. 32, 1807-1813 (2014)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-32-9-1807


Sort:  Year  |  Journal  |  Reset

References

  1. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, E. T. Won, " 100-Mb/s NRZ Visible light communications using a postequalized white LED," IEEE Photon. Technol. Lett. 21, 1063- 1065 (2009).
  2. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, E. Ciaramella, "3.4 Gbit/s visible optical wireless transmission based on RGB LED," Opt. Exp. 20, B501-B506 (2012).
  3. J. Vucic, L. Fernandez, C. Kottke, K. Habel, K. D. Langer, "Implementation of a real-time DMT-based 100 Mbit/s visible-light link," Proc. 36th Eur. Conf. Exhib. Opt. Commun. (2010) pp. 1-5.
  4. J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, J. W. Walewski, "230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs," Proc. Opt. Fiber Commun./Nat. Fiber Opt. Eng. Conf. (2010) pp. 1-3.
  5. P. A. Haigh, Z. Ghassemlooy, H. L. Minh, S. Rajbhandari, F. Arca, S. F. Tedde, O. Hayden, I. Papakonstantinou, "Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications," J. Lightw. Technol. 30, 3081-3088 (2012).
  6. H. Le Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. J. Oh, "High-speed visible light communications using multiple-resonant equalization," IEEE Photon. Technol. Lett. 20, 1243-1245 (2008 ).
  7. E. Biglieri, J. Proakis, S. Shamai, "Fading channels: Information-theoretic and communications aspects," IEEE Trans. Inf. Theory 44, 2619-2692 (1998).
  8. A. Kim, M. Vrazel, V. Hietala, E. Gebara, C. Pelard, S. Bajekal, S. Ralph, J. Laskar, "Equalization and the evolution of gigabit communications," Proc. IEEE 25th Annu. Techn. Dig. Gallium Arsenide Integr. Circuit Symp. (2003) pp. 193-196.
  9. J. Frigon, B. Daneshrad, J. Putnam, E. Berg, K. Ryan, T. Sun, H. Samueli, "Field trial results for high-speed wireless indoor data communications ," IEEE J. Sel. Areas Commun. 18, 297-309 (2000).
  10. K. Burse, R. N. Yadav, S. C. Shrivastava, "Channel equalization using neural networks: A review," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 40, 352-357 (2010).
  11. A. P. do A. Ferreira, E. N. da S. Barros, "A high performance full pipelined arquitecture of MLP neural networks in FPGA ," Proc. IEEE 17th Int. Conf. Electron. Circuits Syst. (2010 ) pp. 742-745.
  12. M. Bahoura, P. Chan-Wang, "FPGA-implementation of high-speed MLP neural network," Proc. IEEE 18th Int. Conf. Electron. Circuits Syst. (2011) pp. 426-429.
  13. Error Performance Parameters and Objectives for International Constant Bit Rate Digital Paths at or Above the Primary Rate, ITU-T Recommendation G. 826, ITU-T Study Group 131WP-6, 1993..
  14. J. Manikandan, B. Venkataramani, K. Girish, H. Karthic, V. Siddharth, "Hardware implementation of real-time speech recognition system using TMS320C6713 DSP ," Proc. 24th Int. Conf. VLSI Design (2011) pp. 250-255.
  15. S. N. Ramlan, R. Mohamad, N. Arbain Sulaiman, "Implementation of M-ary phase shift keying (PSK) baseband modem on texas instrument digital signal processor TMS320C6713 ," Proc. IEEE Int. Conf. Comput. Appl. Ind. Electron. (2011 ) pp. 627-632.
  16. J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85 , 265-298 (1997).
  17. D. Dilaura, K. Houser, R. Mistrick, and G. Steffy, IES Lighting Handbook: Illuminating Engineering, New York, NY, USA..
  18. S. Haykin, Adaptive Filter Theory (Prentice Hall, 2001).
  19. J. G. Proakis, M. Salehi, Fundamentals of Communication Systems (Pearson, 2005).
  20. R. Wang, N. Jindal, T. Bruns, A. R. Bahai, D. C. Cox, " Comparing RLS and LMS adaptive equalizers for nonstationary wireless channels in mobile ad hoc networks ," Proc. IEEE 13th Int. Symp. Personal, Indoor Mobile Radio Commun. (2002) pp. 1131-1135.
  21. A. Goldsmith, Wireless Communications (Cambridge Univ. Press, 2005).
  22. S. Rajbhandari, J. Faith, Z. Ghassemlooy, M. Angelova, "Comparative study of classifiers to mitigate intersymbol interference in diffuse indoor optical wireless communication links," Optik—Int. J. Light Electron. Opt. 124, 4192-4196 (2013).
  23. G. Lera, M. Pinzolas, "Neighborhood based Levenberg-Marquardt algorithm for neural network training," IEEE Trans. Neural Netw. 13, 1200 -1203 (2002).
  24. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, 1998).
  25. Z. Ghassemlooy, W. Popoola, S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling (CRC Press, 2012).
  26. L. Behera, S. Kumar, A. Patnaik, "On adaptive learning rate that guarantees convergence in feedforward networks," IEEE Trans. Neural Netw. 17, 1116-1125 (2006).
  27. J. Armstrong, R. J. Green, M. D. Higgins, " Comparison of three receiver designs for optical wireless communications using white LEDs," IEEE Commun. Lett. 16, 748 -751 (2012).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited