OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: Keren Bergman and Vincent Chan
  • Vol. 1, Iss. 2 — Jul. 1, 2009
  • pp: A180–A193

Enhanced Backwards Recursive Path Computation for Multi-area Wavelength Switched Optical Networks Under Wavelength Continuity Constraint

Ramon Casellas, Ricardo Martínez, Raül Muñoz, and Sebastian Gunreben  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 1, Issue 2, pp. A180-A193 (2009)
http://dx.doi.org/10.1364/JOCN.1.00A180


View Full Text Article

Enhanced HTML    Acrobat PDF (2029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the context of the future Internet, all-optical wavelength switched optical networks will play an important role in either evolutionary or revolutionary design paradigms. In any paradigm, dense wavelength domain multiplexing (DWDM) is the most cost-effective technology to increase bandwidth capacity. DWDM provides the basis for a core optical transport infrastructure supporting a wide range of heterogeneous services. However, such all-optical networks raise well-known challenges such as the wavelength continuity constraint (WCC). The WCC is hard to address in a multiarea scenario when provisioning an end-to-end lightpath owing to network topology hiding requirements and the limited exchange of information between areas. The Internet Engineering Task Force (IETF) is currently standardizing the path computation element (PCE) architecture, a good candidate to perform multidomain path computation. In such an architecture, the approach named backwards recursive path computation (BRPC), also under standardization at the IETF, aims at overcoming the limitations of the per-domain mechanism. However, although BRPC does provide end-to-end shortest paths, it fails to take into account the WCC, which is the main motivation for this work. We extend the BRPC algorithm and the companion PCE protocol in order to address the end-to-end WCC efficiently. We perform a quantitative comparative analysis of the different approaches, experimentally showing the improvements of the conceived solution, which has been evaluated in a GMPLS-controlled network of the ADRENALINE testbed.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4251) Fiber optics and optical communications : Networks, assignment and routing algorithms
(060.4264) Fiber optics and optical communications : Networks, wavelength assignment
(060.4265) Fiber optics and optical communications : Networks, wavelength routing

ToC Category:
Optical Networks for the Future Internet

History
Original Manuscript: November 6, 2008
Revised Manuscript: December 23, 2008
Manuscript Accepted: February 18, 2009
Published: July 1, 2009

Virtual Issues
Optical Networks for the Future Internet (2009) Journal of Optical Networking

Citation
Ramon Casellas, Ricardo Martínez, Raül Muñoz, and Sebastian Gunreben, "Enhanced Backwards Recursive Path Computation for Multi-area Wavelength Switched Optical Networks Under Wavelength Continuity Constraint," J. Opt. Commun. Netw. 1, A180-A193 (2009)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-1-2-A180

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited