OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 1, Iss. 4 — Sep. 1, 2009
  • pp: 307–312

Circle Polarization Shift Keying With Direct Detection for Free-Space Optical Communication

Xinhui Zhao, Yong Yao, Yunxu Sun, and Chao Liu  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 1, Issue 4, pp. 307-312 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A binary polarization shift-keying scheme with two circle polarization states, circle polarization shift keying (CPolSK), is proposed and discussed. The propagation of the circle-polarized Gaussian Schell model beam is studied based on the cross-spectral density matrix. The results show that the state of polarization remains unchanged and the degree of polarization slightly increases upon propagation in a turbulent atmosphere. The analysis of the bit-error-rate performance shows that the CPolSK system has about a 3 dB lower requirement in signal-to-noise ratio than the on–off keying system. The modulation scheme will be helpful for practical free-space optical communication systems in the future.

© 2009 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4080) Fiber optics and optical communications : Modulation
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Regular Papers

Original Manuscript: March 26, 2009
Revised Manuscript: July 22, 2009
Manuscript Accepted: July 23, 2009
Published: August 20, 2009

Xinhui Zhao, Yong Yao, Yunxu Sun, and Chao Liu, "Circle Polarization Shift Keying With Direct Detection for Free-Space Optical Communication," J. Opt. Commun. Netw. 1, 307-312 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Alan, J. James, J. Sluss, H. R. Hazem, G. L. Peter, “Free-space optical wavelength diversity scheme for fog mitigation in a ground-to-unmanned-aerial-vehicle communications link,” Opt. Eng. (Bellingham), vol. 45, pp. 086001–12, 2006. [CrossRef]
  2. M. Uysal, L. Jing, Y. Meng, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE. Trans. Wireless Commun., vol. 5, pp. 1229–1233, 2006. [CrossRef]
  3. L. C. Andrews, R. L. Phillips, C. Y. Hopen, Laser Beam Scintillation With Applications. Bellingham, Washington: SPIE Press, 2001. [CrossRef]
  4. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol., vol. 24, pp. 4750–4762, 2006. [CrossRef]
  5. M. Lazzaroni, F. E. Zocchi, “Optical coupling from plane wave to step-index single-mode fiber,” Opt. Commun., vol. 237, pp. 37–43, 2004. [CrossRef]
  6. R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Soc. Am. A, vol. 19, pp. 753–758, 2002. [CrossRef]
  7. S. Arnon, N. S. Kopeika, “Adaptive optical transmitter and receiver for space communication through thin clouds,” Appl. Opt., vol. 36, pp. 1987–1993, 1997. [CrossRef] [PubMed]
  8. W. O. Popoola, Z. Ghassemlooy, J. I. H. Allen, E. Leitgeb, S. Gao, “Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel,” Opto-electronics (London), vol. 2, pp. 16–23, 2008.
  9. H. Hemmati, M. W. Wright, B. Sanii, N. A. Page, G. G. Ortiz, A. Biswas, K. E. Wilson, “Multigigabit data-rate optical communication depicting LEO-to-GEO and GEO-to-ground links,” presented at Free-Space Laser Communication Technologies XIV, San Jose, CA, USA, 2002.
  10. S. Trisno, I. I. Smolyaninov, S. D. Milner, C. C. Davis, “Delayed diversity for fade resistance in optical wireless communications through turbulent media,” presented at Optical Transmission Systems and Equipment for WDM Networking III, Philadelphia, PA, USA, 2004.
  11. H. Izadpanah, T. El Batt, V. Kukshya, F. Dolezal, B. K. Ryu, “High-availability free space optical and RF hybrid wireless networks,” IEEE. Wireless Commun., vol. 10, pp. 45–53, 2003. [CrossRef]
  12. S. Benedetto, P. Poggiolini, “Highly bandwidth efficient transmission through continuous polarisation modulation,” Electron. Lett., vol. 26, pp. 1392–1394, 1990. [CrossRef]
  13. S. Trisno, C. C. Davis, “Performance of free space optical communication systems using polarization shift keying modulation,” presented at Free-Space Laser Communications VI, San Diego, CA, USA, 2006.
  14. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A, vol. 312, pp. 263–267, 2003. [CrossRef]
  15. O. Korotkova, M. Salem, E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun., vol. 233, pp. 225–230, 2004. [CrossRef]
  16. M. Salem, O. Korotkova, A. Dogariu, E. Wolf, “Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere,” Waves Random Media, vol. 14, pp. 513–523, 2004. [CrossRef]
  17. H. Roychowdhury, S. A. Ponomarenko, E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt., vol. 52, pp. 1611–1618, 2005. [CrossRef]
  18. Y. Cai, Q. Lin, H. T. Eyyuboglu, Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express, vol. 16, pp. 7665–7673, 2008. [CrossRef] [PubMed]
  19. H. T. Eyyuboglu, Y. Baykal, Y. Cai, “Degree of polarization for partially coherent general beams in turbulent atmosphere,” Appl. Phys. B, 89, pp. 91–97, 2007. [CrossRef]
  20. J. H. Shu, Z. Y. Chen, J. X. Pu, “Polarization changes of partially coherent electromagnetic vortex beams propagating in turbulent atmosphere,” Chin. Opt. Lett., vol. 26, pp. 024207–4, 2009. [CrossRef]
  21. H. Roychowdhury, O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun., vol. 249, pp. 379–385, 2005. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited