OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 2, Iss. 1 — Jan. 1, 2010
  • pp: 80–90

Generating Realistic Optical Transport Network Topologies

Claunir Pavan, Rui Manuel Morais, José R. Ferreira da Rocha, and Armando Nolasco Pinto  »View Author Affiliations

Journal of Optical Communications and Networking, Vol. 2, Issue 1, pp. 80-90 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address the problem of generating physical realistic optical transport network topologies. This type of network has characteristics that differ from scale-free networks, such as the Internet. Based on the analysis of a set of real transport topologies, we identify and assess relevant characteristics. A method to generate realistic topologies is proposed. The proposed method is validated by comparing the characteristics of computer-generated and real-world optical transport networks.

© 2009 Optical Society of America

OCIS Codes
(060.4250) Fiber optics and optical communications : Networks
(060.4257) Fiber optics and optical communications : Networks, network survivability
(060.4258) Fiber optics and optical communications : Networks, network topology

ToC Category:
Research Papers

Original Manuscript: September 21, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: November 27, 2009
Published: December 24, 2009

Claunir Pavan, Rui Manuel Morais, José R. Ferreira da Rocha, and Armando Nolasco Pinto, "Generating Realistic Optical Transport Network Topologies," J. Opt. Commun. Netw. 2, 80-90 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Gunes, K. Sarac, “Inferring subnets in router-level topology collection studies,” in IMC ’07: Proc. of the 7th ACM SIGCOMM Conf. on Internet Measurement, New York, NY, USA: ACM, 2007, pp. 203–208.
  2. M. Naldi, “Connectivity of Waxman topology models,” Comput. Commun., vol. 29, no. 1, pp. 24–31, 2005. [CrossRef]
  3. B. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas Commun., vol. 6, no. 9, pp. 1617–1622, Dec. 1988. [CrossRef]
  4. M. Doar, “A better model for generating test networks,” in Proc. of the IEEE Global Telecommunications Conf., GLOBECOM ’96, Nov. 1996, pp. 86–93.
  5. E. Zegura, K. Calvert, S. Bhattacharjee, “How to model an internetwork,” in Proc. of the 15th Annu. Joint Conf. of the IEEE Computer Societies. Networking the Next Generation. INFOCOM ’96, vol. 2, Mar. 1996, pp. 594–602.
  6. L. Cheng, N. Hutchinson, M. Ito, “Realnet: a topology generator based on real Internet topology,” in Proc. of the 22nd Int. Conf. on Advanced Information Networking and Applications, AINAW ’08, Mar. 2008, pp. 526–532.
  7. M. Faloutsos, P. Faloutsos, C. Faloutsos, “On power-law relationships of the Internet topology,” in Proc. of the Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’99, New York, NY, USA: ACM, 1999, pp. 251–262.
  8. C. Jin, C. J. Qian, S. Jamin, “Inet: Internet topology generator,” Technical Report CSE-TR-433-00, EECS Department, University of Michigan, 2000.
  9. D. Magoni, “Nem: a software for network topology analysis and modeling,” in Proc. of the 10th IEEE Int. Symp. on Modeling, Analysis and Simulation of Computer and Telecommunications Systems, MASCOTS ’02, Oct. 2002, pp. 364–371.
  10. C. Palmer, J. Steffan, “Generating network topologies that obey power laws,” in Proc. of the IEEE Global Telecommunications Conf., GLOBECOM ’00, vol. 1, Nov. 2000, pp. 434–438.
  11. A. Medina, A. Lakhina, I. Matta, J. Byers, “Brite: an approach to universal topology generation,” in Proc. of the 9th Int. Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS ’01, Aug. 2001, pp. 346–353.
  12. A.-L. Barabasi, E. Bonabeau, “Scale-free networks,” Sci. Am., vol. 288, no. 5, pp. 50–59, May 2003. [CrossRef]
  13. VIA Networks, http://www.vianetworks.net/datacenter-globalnetwork.php.
  14. Bulgarian Research and Education Network—BREN, BREṈmap̱2008̱EN.png, http://www.bren.acad.bg/images.
  15. Rede Nacional de Pesquisa—RNP, http://www.rnp.br/en/backbone/index.php.
  16. The very-high-performance Backbone Network Service—vBNS, http://www.stanford.edu/services/internet2/vbns.html.
  17. Czech Education and Scientific NETwork—CESNET, http://www.cesnet.cz/provoz/zatizeni.
  18. National Science Foundation Network—NSFNET, http://www.ucpr.edu.co/paginas/revista57/auge.htm.
  19. D. Colle, S. De Maesschalck, C. Develder, P. Van Heuven, A. Groebbens, J. Cheyns, I. Lievens, M. Pickavet, P. Lagasse, P. Demeester, “Data-centric optical networks and their survivability,” IEEE J. Sel. Areas Commun., vol. 20, no. 1, pp. 6–20, Jan. 2002. [CrossRef]
  20. Austrian Academic Computer Network—ACOnet, http://www.aco.net/technologie.html.
  21. Mzima Backbone Network, networḵmap̱rev0001b.swf, http://www.mzima.net/gfx.
  22. Slovenia Academic and Research Network—ARNES, http://www.arnes.si/backbone.htm.
  23. C. T. Politi, H. Haunstein, D. A. Schupke, S. Duhovnikov, G. Lehmann, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag., vol. 45, no. 2, pp. 40–47, Feb. 2007. [CrossRef]
  24. RedIRIS Network, http://www.rediris.es/red.
  25. National LambdaRail, http://noc.nlr.net.
  26. Memorex Network, http://www.memorex-telex.cz/products02.php.
  27. Canada’s Advanced Network—CANARIE, http://www.canarie.ca/canet4/connected/map.html.
  28. M. Klinkowski, F. Herrero, D. Careglio, J. Sol-Pareta, “Adaptive routing algorithms for optical packet switching networks,” in Proc. of the Conf. on Optical Network Design and Modelling, ONMD ’05, Feb 2005, pp. 235–241.
  29. Advanced Research Projects Agency Network—ARPANET, http://www.optical-network.com/topology.php.
  30. Polish Optical Internet—PIONIER, http://www.pionier.gov.pl/network/index.htm.
  31. Cox High Speed Internet Backbone, mapNationalInt.gif, http://www.coxbusiness.com/value/lalaunch/images.
  32. Slovak Academic Network—SANET, http://www.sanet.sk/en/siet_topologia.shtm.
  33. Internet’s New Backbone Network, http://www.internet2.edu/network/.
  34. J. Pedro, A. Teixeira, P. Monteiro, J. Pires, “On a Portuguese backbone network of reference,” in Proc. of the Symp. on Enabling Optical Networks and Sensors, SEON ’05, June 2005, pp. 80–84.
  35. National Telecommunication Network for Technology, Education and Research—RENATER, http://www.renater.fr/spip.php?rubrique12&lang=en.
  36. GEANT Backbone Topology—GEANT2, http://www.geant2.net/server/show/nav.00d007009.
  37. Louisiana Optical Network Initiative—LONI, http://www.loni.org/images/LONI_Architecture_060106.jpg.
  38. Metrona Network, http://www.metronap.net/Network-Map.aspx.
  39. Omnicom Telecommunications Network Map, http://www.omnicom-telecom.com/company.html.
  40. Internet2 Network, http://www.internet2.edu/network.
  41. S. K. Korotky, “Network global expectation model: a statistical formalism for quickly quantifying network needs and costs,” J. Lightwave Technol., vol. 22, no. 3, pp. 703–722, Mar. 2004. [CrossRef]
  42. J. H. Stapleton, Models for Probability and Statistical Inference: Theory and Applications. Hoboken, NJ, USA: Wiley-Interscience, 2007. [CrossRef]
  43. A.-L. Barabasi, “The architecture of complexity,” IEEE Control Syst., vol. 27, no. 4, pp. 33–42, Aug. 2007. [CrossRef]
  44. J.-P. Vasseur, M. Pickavet, P. Demeester, Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS. San Francisco, CA, USA: Morgan Kaufmann, 2004.
  45. W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies for Optical, MPLS, SONET, and ATM Networking. NJ: Prentice Hall, 2004.
  46. S. Ramamurthy, L. Sahasrabuddhe, B. Mukherjee, “Survivable WDM mesh networks,” J. Lightwave Technol., vol. 21, no. 4, pp. 870–883, Apr. 2003. [CrossRef]
  47. N. Takahashi, “On clustering coefficients of graphs with the fixed numbers of vertices and edges,” in European Conf. on Circuit Theory and Design, 2009. ECCTD 2009, Aug. 2009, pp. 814–817.
  48. G. Siganos, M. Faloutsos, P. Faloutsos, C. Faloutsos, “Power laws and the as-level Internet topology,” IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 514–524, Aug. 2003. [CrossRef]
  49. H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, W. Willinger, “Network topology generators: degree-based vs. structural,” in Proc. of the Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’02, vol. 32, no. 4, New York, NY, USA: ACM, Aug. 2002, pp. 147–159.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited