Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Lightpath Rerouting Strategies in WDM All-Optical Networks Under Scheduled and Random Traffic

Not Accessible

Your library or personal account may give you access

Abstract

In WDM all-optical networks without wavelength conversion, traffic rerouting is motivated either by an optimization of resource utilization or by network survivability. In this paper, we use rerouting to optimize network resources allocation in order to set up an incoming lightpath demand to be blocked for lack of resources. Rerouting aims at reassigning the wavelength and/or the path of one or several established connections in order to free enough wavelengths to satisfy the incoming demand. Rerouting refers implicitly to dynamic traffic. In most previous studies related to rerouting, only random (dynamic) traffic is considered. In this paper, we propose a new lightpath rerouting scheme considering three types of traffic demands, referred to as permanent lightpath demands (PLDs), scheduled lightpath demands (SLDs), and random lightpath demands (RLDs). PLDs are static, whereas SLDs and RLDs are dynamic. SLDs are preplanned, whereas RLDs are stochastic. PLDs may be seen as a particular case of SLDs. PLDs and SLDs correspond to guaranteed services, whereas RLDs correspond to best-effort services. Thus, PLDs and SLDs cannot be rerouted. We here describe two new routing and wavelength assignment (RWA) strategies applying rerouting. Both strategies assume that PLDs are routed offline during the network planning phase. The first strategy computes the RWA for SLDs and RLDs on the fly. The second strategy proceeds in two separate phases. It first computes offline the RWA for SLDs before considering RLDs on the fly on the remaining network resources. Our rerouting schemes aim at minimizing the number of RLDs or the number of optical channels to be rerouted. Through numerical examples and experimental simulations, we outline that routing SLDs offline and RLDs online instead of routing SLDs and RLDs online enables lower rejection ratios. We also compare our proposed rerouting algorithms with other approaches from the literature in terms of complexity.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Lightpath Scheduling and Routing for Traffic Adaptation in WDM Networks

James Yiming Zhang, Hussein Mouftah, Jing Wu, and Michel Savoie
J. Opt. Commun. Netw. 2(10) 803-819 (2010)

Static Lightpath Establishment in Multilayer Traffic Engineering Under Physical Layer Impairments

Namik Sengezer and Ezhan Karasan
J. Opt. Commun. Netw. 2(9) 662-677 (2010)

Stable Logical Topologies for Survivable Traffic Grooming of Scheduled Demands

Arunita Jaekel, Ying Chen, and Ataul Bari
J. Opt. Commun. Netw. 2(10) 793-802 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.