OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 2, Iss. 4 — Apr. 1, 2010
  • pp: 206–220

Performance Comparison and Overview of Different Approaches for VLSI Optoelectronic Interconnects

Yun-Parn Lee and Yulei Zhang  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 2, Issue 4, pp. 206-220 (2010)
http://dx.doi.org/10.1364/JOCN.2.000206


View Full Text Article

Acrobat PDF (1577 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although a great deal of research has been carried out over the last decade in which many different approaches for devising optoelectronic interconnects have been proposed, more detailed analysis of the performance parameters such as power, latency, and area of different optical technologies is yet to be done. Optoelectronics offer potential for new approaches to the production of VLSI interconnects, but previous works have made overly simplified assumptions for optoelectronic interconnections. In this paper, we present a preliminary analysis of the system parameters of different optoelectronic interconnect technologies. Based on our analysis, we conclude that the three-dimensional free-space optoelectronic interconnect network has the best speed area product performance compared with fiber-optical interconnects and optical microelectromechanical systems (MEMS) interconnects. Second, although the optoelectronic interconnect offers higher data rates and less power per bit compared with electronic interconnects, the bipolar encoding scheme on the source plane and the detector plane means that a larger area and volume will be needed.

© 2010 Optical Society of America

OCIS Codes
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Research Papers

History
Original Manuscript: November 5, 2009
Revised Manuscript: February 17, 2010
Manuscript Accepted: March 1, 2010
Published: April 1, 2010

Citation
Yun-Parn Lee and Yulei Zhang, "Performance Comparison and Overview of Different Approaches for VLSI Optoelectronic Interconnects," J. Opt. Commun. Netw. 2, 206-220 (2010)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-2-4-206


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. National Technology Roadmap for Semiconductors. The Semiconductor Industry Association, 1994, 1997, 2008.
  2. C.-K. Cheng, J. Lillis, S. Lin, and N. Chang, Interconnect Analysis and Synthesis. Wiley, 2000.
  3. M. Celik, L. Pileggi, and A. Odabasioglu, IC Interconnct Analysis. Kluwer Academic, 2002.
  4. http://en.wikipedia.org/wiki/Interconnect_bottleneck.
  5. Y. Li and J. Popelek, “Volume-consumption comparisons of free-space and guided-wave optical interconnections,” Appl. Opt. , vol. 39, no. 11, pp. 1815-1825, Apr. 2000. [CrossRef]
  6. J. Popelek and Y. Li, “Free-space fiber hybrid distributed optical cross-connect interconnect module,” Opt. Lett. , vol. 24, pp. 42-44, 1999. [CrossRef]
  7. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. , vol. 27, no. 9, pp. 1742-1751, May 1988. [CrossRef]
  8. J. W. Goodman, F. J. Leonberger, S. Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE , vol. 72, pp. 850-875, 1985. [CrossRef]
  9. R. K. Kostuk, J. W. Goodman, and L. Hesselink, “Optical imaging applied to microelectronic chip-to-chip interconnections,” Appl. Opt. , vol. 24, no. 17, pp. 2851-2858, Sept. 1985. [CrossRef]
  10. H. S. Hinton, T. J. Cloonan, F. B. McCormick, Jr., A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE , vol. 82, no. 11, pp. 1632-1649, Nov. 1994. [CrossRef]
  11. J. Fan, D. Zaleta, C.-K. Cheng, and S. H. Lee, “Physical models and algorithms for optoelectronic MCM layout,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , vol. 3, no. 1, pp. 124-135, Mar. 1995. [CrossRef]
  12. R. K. Kostuk, J. W. Goodman, and L. Hesselink, “Design considerations for holographic optical interconnects,” Appl. Opt. , vol. 26, pp. 3947-3953, 1987. [CrossRef]
  13. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Hihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE , vol. 88, no. 6, pp. 780-793, June 2000. [CrossRef]
  14. Y.-P. T. Lee, “Means and method for implementation of a two-dimensional truth-table look-up holographic processor,” U.S. Patent 4892370, Jan. 9, 1990.
  15. H. M. Ozaktas and J. W. Goodman, “The limitations of interconnections in providing communication between an array of points,” in Frontiers of Computing Systems Research, vol. 2, S.K.Tewksbury, Ed. New York: Plenum, 1991, pp. 61-130.
  16. H. M. Ozaktas and F. F. Erden, “Comparison of fully three-dimensional optical, normally conducting, and superconducting interconnections,” Appl. Opt. , vol. 38, no. 35, pp. 7264-7275, Dec. 1999. [CrossRef]
  17. H. M. Ozaktas and D. Mendlovic, “Multistage optical interconnection architectures with the least possible growth of system size,” Opt. Lett. , vol. 18, no. 4, pp. 296-298, 1993. [CrossRef]
  18. H. M. Ozaktas, “Toward an optimal foundation architecture for optoelectronic computing. Part I. Regularly interconnected device planes,” Appl. Opt. , vol. 36, no. 23, pp. 5682-5696, Aug. 1997. [CrossRef]
  19. H. M. Ozaktas, “Toward an optimal foundation architecture for optoelectronic computing. Part II. Physical construction and application platforms,” Appl. Opt. , vol. 36, no. 23, pp. 5697-5705, Aug. 1997. [CrossRef]
  20. A. V. Krishnamoorthy, G. C. Mardsen, J. E. Ford, and S. C. Esnder, “Dual-scale topology optoelectronic matrix algebraic processing system,” U.S. Patent 5321639, June 14, 1994.
  21. P. S. Guilfoyle, F. F. Zeise, and V. N. Morozou, “Global interconnect architecture for electronic computing modules,” U.S. Patent 5432722, July 11, 1995.
  22. T. J. Drabik, “Optoelectronic integrated systems based on free-space interconnects with arbitrary degree of space variance,” Proc. IEEE , vol. 82, no. 11, pp. 1595-1622, 1994. [CrossRef]
  23. H. Cho, P. Kapur, and K. C. Saraswat, “Power comparison between high-speed electrical and optical interconnects for interchip communication,” J. Lightwave Technol. , vol. 22, no. 9, pp. 2021-2033, Sept. 2004. [CrossRef]
  24. H. M. Ozaktas, Y. Amitai, and J. W. Goodman, “Comparison of system size for some optical interconnection architectures and the folded multi-facet architecture,” Opt. Commun. , vol. 82, no. 4, pp. 225-228, Apr. 1991. [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics. Cambridge U. Press, 1980.
  26. E. Hecht, Optics. Addison Wesely, ch. 2.
  27. K. K. Ryu, E. Shin, and V. J. Mooney, “A comparison of five different multiprocessor SoC bus architectures,” Proc. of the EUROMICRO Symp., 2001.
  28. K. A. Felix, “Bus arbiter,” U.S. Patent 4237534, Dec. 2, 1980.
  29. H. M. Ozaktas and D. A. B. Miller, “Digital Fourier optics,” Appl. Opt. , vol. 35, no. 8, pp. 1212-1219, Mar. 1996. [CrossRef]
  30. R. Lechner, “A transform approach to logic design,” IEEE Trans. Comput. , vol. C-19, no. 7, July 1970.
  31. C. Edwards, “The application of the Rademacher-Walsh transform to Boolean Classification,” IEEE Trans. Comput. , vol. C-24, no. 1, Jan. 1975. [CrossRef]
  32. S. L. Hurst, “The application of Chow parameters and Rademacher-Walsh matrices in the synthesis of binary functions,” Comput. J. , vol. 16, pp. 165-173, 1973. [CrossRef]
  33. C. R. Edwards, “The application of the Rademacher-Walsh transform to digital circuit synthesis,” in Theory and Applications of Walsh and Other Sinusoidal Functions, 1973.
  34. H. F. Harmuth, Transmission of Information by Orthogonal Functions. Springer-Verlag, 1972.
  35. C. C. Lee, “Boolean logic synthesis approach suitable for optoelectronic implementation,” First Place Award, IEEE, California Women Engineer Society, San Diego Science Fair Competition, 1998.
  36. J. Baker, CMOS Circuit Design, Layout, and Simulation, revised 2nd ed.Wiley Interscience, 2008.
  37. G. Li, D. Huang, E. Yuceturk, P. J. Marchand, S. C. Esener, V. H. Ozguz, and Y. Liu, “Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stack,” Appl. Opt. , vol. 41, no. 2, pp. 348-360, Jan. 2002. [CrossRef]
  38. G. Li and S. Esener, “Parallel free-space optical interconnection,” in Optical Switching/Networking and Computing for Multimedia Systems, M.Guizani and A.Battou, Eds. CRC Press, 2002, ch. 10, pp. 301-370.
  39. X. Zheng, J. K. Lexau, J. Bergey, J. E. Cunningham, R. Ho, R. D. Ashok, and A. V. Krishnamoorthy, “Optical transceiver chips based on co-integration of capacitively coupled proximity interconnects and VCSELS,” IEEE Photon. Technol. Lett. , vol. 19, no. 7, pp. 453-455, Apr. 2007. [CrossRef]
  40. D. Agarwar, “Optical interconnects to silicon chips using short pulses,” Ph.D. dissertation, Standford Univ., 2002, p. 36, p. 54.
  41. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE , vol. 88, no. 6, pp. 728-749, June 2000. [CrossRef]
  42. J. Jahns, “Digital optical computing and interconnection,” in The Handbook of Photonics, 2nd ed., M.C.Gupta and J.Ballato, Eds. CRC Press, 2007, ch. 19.
  43. S. Sinzinger and J. Jahns, “Integrated micro-optical imaging system with a high interconnection capacity fabricated in planar optics,” Appl. Opt. , vol. 36, pp. 4729-4735, 1997. [CrossRef]
  44. J. Jahns, “Digital optical computing and interconnection,” in The Handbook of Photonics, 2nd ed., M.C.Gupta and J.Ballato, Eds. CRC Press, 2006, ch. 19.
  45. M. Gruber, “Multichip module with planar-integrated free-space optical vector-matrix-type interconnects,” Appl. Opt. , vol. 43, no. 2, pp. 463-470, Jan. 2004. [CrossRef]
  46. A. Louri, S. Furlonge, and C. Neodeous, “Experimental demonstration of the optical multi-mesh hypercube: scaleable interconnection network for multiprocessors and multi-computers,” Appl. Opt. , vol. 35, no. 35, pp. 6909-6919, Dec. 1996. [CrossRef]
  47. J. J. Liu, B. Gollsneider, W. Changa, G. Carharta, M. L. Vorontsova, G. J. Simonisa, and B. L. Shoop, “Two-dimensional opto-electronic interconnect-processor and its operational bit-error-rate,” Proc. SPIE , vol. 5595, pp. 153-161, 2004. [CrossRef]
  48. F. Haas, D. A. Honey, and H. F. Bare, “Optical interconnects for 3D computer architectures,” U.S. Airforce Rome Laboratory in-house report, RL-TR-94-227, Dec. 1994.
  49. J. R. Leger and S. H. Lee, “Coherent optical implementation of generalized two-dimensional transform,” Opt. Eng. (Bellingham) , vol. 18, no. 5, 1979.
  50. J. Goodman, Introduction to Fourier Optics, 3rd ed.Roberts and Company, 2004.
  51. J. Kechmi and A. A. Friesem, “Optimal holographic Fourier-transform lens,” Appl. Opt. , vol. 23, no. 22, pp. 4015-4019, Nov. 1984. [CrossRef]
  52. Y. Amita and A. A. Friesem, “Recursive design techniques for Fourier transform holographic lenses,” Opt. Eng. (Bellingham) , vol. 26, no. 11, pp. 1133-1139, Nov. 1987.
  53. W.-H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, vol. XVI, E.Wolf, Ed. North-Holland, 1978, pp. 121-195.
  54. T.-H. Lin and M. R. Feldman, “Programmable optical interconnect system,” U.S. Patent 5170269, Dec. 8, 1992.
  55. T.-H. Lin, “Implementation and characterization of a flexture-beam micromechanical spatial light modulator,” Opt. Eng. (Bellingham) , vol. 33, no. 1, pp. 3643-3648, Nov. 1994. [CrossRef]
  56. Finisar, 10-Gbps850 nm VCSEL data sheet. Available: http://www.finisar.com.
  57. Alphalas, Ultrafast Photodetectors, UPD Series data sheet. Available: http://www.alphalas.com.
  58. International Technology Roadmap for Semiconductors. Available: http://www.itrs.net/Links/2008ITRS/Home2008.htm.
  59. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE , vol. 97, no. (7), pp. 1166-1185, July 2009.
  60. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE , vol. 97, no. 7, pp. 1161-1165, July 2009. [CrossRef]
  61. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express , vol. 17, no. 17, pp. 15248-15256, Aug. 2009. [CrossRef]
  62. K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Ganyo, T. Ishi, D. Okamato, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S.-I. Itabashi, and J. Akedo, “On-chip optical interconnect,” Proc. IEEE , vol. 97, no. 7, pp. 1186-1198, July 2009. [CrossRef]
  63. D. Lu, “Recent advances on chip-to-chip optical interconnect,” Proc. SPIE , vol. 7516, paper 75160O, 2009.
  64. A. K. Kodi and A. Louri, “Multidimensional and reconfigurable optical interconnects for high-performance computing (HPC) systems,” J. Lightwave Technol. , vol. 27, no. 21, pp. 4634-4641, Nov. 2009. [CrossRef]
  65. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. L. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE , vol. 97, no. 7, pp. 1337-1361, July 2009.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited