OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 8 — Aug. 1, 2011
  • pp: 594–609

On the Time Dynamics of Optical Communication Through Atmospheric Turbulence With Feedback

Andrew Puryear and Vincent W. S. Chan  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 3, Issue 8, pp. 594-609 (2011)
http://dx.doi.org/10.1364/JOCN.3.000594


View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the turbulent atmosphere, wavefront predistortion based on receiver-to-transmitter feedback can significantly improve the performance of optical communication systems that employ sparse aperture transmit and receive spatial diversity. The time evolution of the atmosphere, as wind moves turbulent eddies across the propagation path, can limit any improvement realized by wavefront predistortion with feedback. The improvement is especially limited if the latency is large or the feedback rate is small compared to the time it takes for turbulent eddies to move across the link. In this paper, we develop a physics based channel model that describes the time evolution of atmospheric turbulence. Based on that channel model, we derive theoretical expressions relating latencies—such as feedback latency and channel state estimate latency—and feedback rate to optimal performance. Specifically, we find the theoretical optimal average bit error rate as a function of fundamental parameters such as wind speed, atmospheric coherence length, feedback rate, feedback latency, and channel state estimate latency. Further, we describe a feedback strategy to achieve the optimal bit error rate. We find that the sufficient feedback rate scales linearly with the inverse of the atmospheric coherence time and sub-linearly with the number of transmitters. Under typical turbulence conditions, low-rate feedback, of the order of hundreds of bits per second, with associated latencies of less than milliseconds is sufficient to achieve most of the gain possible from wavefront predistortion.

© 2011 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(030.0030) Coherence and statistical optics : Coherence and statistical optics

ToC Category:
Regular Papers

History
Original Manuscript: February 16, 2011
Revised Manuscript: May 18, 2011
Manuscript Accepted: June 25, 2011
Published: July 19, 2011

Citation
Andrew Puryear and Vincent W. S. Chan, "On the Time Dynamics of Optical Communication Through Atmospheric Turbulence With Feedback," J. Opt. Commun. Netw. 3, 594-609 (2011)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-3-8-594

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited