OSA's Digital Library

Journal of Optical Communications and Networking

Journal of Optical Communications and Networking

  • Editors: K. Bergman and V. Chan
  • Vol. 3, Iss. 8 — Aug. 1, 2011
  • pp: A21–A31

Energy-Efficient Error Control for Tightly Coupled Systems Using Silicon Photonic Interconnects

Xuezhe Zheng, Pranay Koka, Michael O. McCracken, Herb Schwetman, James G. Mitchell, Jin Yao, Ron Ho, Kannan Raj, and Ashok V. Krishnamoorthy  »View Author Affiliations


Journal of Optical Communications and Networking, Vol. 3, Issue 8, pp. A21-A31 (2011)
http://dx.doi.org/10.1364/JOCN.3.000A21


View Full Text Article

Enhanced HTML    Acrobat PDF (713 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Future computer systems will require new levels of computing power and hence new levels of core and chip densities. Because of constraints on power and area, optical interconnection networks will play a critical role in these new systems. In this paper, we describe the macrochip, a multi-chip node with an embedded silicon photonic interconnection network that consists of thousands of optical links. For such a large-scale wavelength division multiplexing optical network, we show how to use an energy-efficient error control scheme employing variable-length cyclic redundancy check codes to achieve a desirable residual bit error rate (BER) of 10 23 for reliable system operation with the individual link BER at 10 12 or higher. We use a discrete-event network simulation of the macrochip using uniform random traffic to show that our scheme incurs minimal impact on performance compared to a perfect system with no error control. Using link level energy efficiency and network throughput analysis, we estimate and report network level energy efficiency using the metric of energy per useful bit.

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(200.4650) Optics in computing : Optical interconnects

ToC Category:
Optics in the Data Center

History
Original Manuscript: January 19, 2011
Revised Manuscript: May 30, 2011
Manuscript Accepted: June 6, 2011
Published: June 24, 2011

Citation
Xuezhe Zheng, Pranay Koka, Michael O. McCracken, Herb Schwetman, James G. Mitchell, Jin Yao, Ron Ho, Kannan Raj, and Ashok V. Krishnamoorthy, "Energy-Efficient Error Control for Tightly Coupled Systems Using Silicon Photonic Interconnects," J. Opt. Commun. Netw. 3, A21-A31 (2011)
http://www.opticsinfobase.org/jocn/abstract.cfm?URI=jocn-3-8-A21


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, "The landscape of parallel computing research: a view from Berkeley," Tech. Rep. UCB/EECS-2006-183, EECS, UC Berkeley, 2006.
  2. S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook, "Tile64-processor: a 64-core SoC with mesh interconnect," ISSCC, 2008, pp. 88‒598.
  3. S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar, "An 80- tile sub-100-W TeraFLOPS processor in 65-nm CMOS," IEEE J. Solid-State Circuits 43, (1), 29‒41 (2008).
  4. P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. Williams, and K. Yelick, "Exascale computing study: technology challenges in achieving exascale systems," DARPA IPTO Report, 2008.
  5. Semiconductor Industries Association, International Technology Roadmap for Semiconductors, 2008, [Online]. Available: http://www.itrs.net/Links/2008ITRS/Home2008.htm
  6. R. Drost, R. Hopkins, R. Ho, and I. Sutherland, "Proximity communication," IEEE J. Solid-State Circuits 39, (9), 1529‒1535 (2004).
  7. K. Kanda, D. Antono, K. Ishida, H. Kawaguchi, T. Kuroda, and T. Sakurai, "1.27 Gb/s/pin 3 mW/pin wireless superconnect (WSC) interface scheme," ISSCC, Vol. 1, 2003, pp. 186‒487.
  8. J. Mitchell, J. Cunningham, A. V. Krishnamoorthy, R. Drost, and R. Ho, "Integrating novel packaging technologies for large scale computer systems," ASME/Pacific Rim Technical Conf. and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS, and NEMS (InterPACK 2009), June 2009, pp. 57‒66.
  9. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, "Computer systems based on silicon photonic interconnects," Proc. IEEE 97, (7), 1337‒1361 (2009). [CrossRef]
  10. P. Koka, M. O. McCracken, H. Schwetman, X. Zheng, R. Ho, and A. V. Krishnamoorthy, "Silicon–photonic network architectures for scalable, power-efficient multi-chip systems," Proc. 37th Annu. Int. Symp. Computer Architecture, 2010, pp. 117‒128.
  11. W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan Kaufmann, 2004, p. 411.
  12. J. Orcutt, A. Khilo, M. Popovic, C. Holzwarth, B. Moss, H. Li, M. Dahlem, T. Bonifield, F. Kartner, E. Ippen, J. Hoyt, R. Ram, and V. Stojanovic, "Demonstration of an electronic photonic integrated circuit in a commercial scaled bulk CMOS process," Conf. on Lasers and Electro-Optics (CLEO), 2008, CTuBB3.
  13. A. V. Krishnamoorthy, J. E. Cunningham, X. Zheng, I. Shubin, J. Simons, D. Feng, H. Liang, C.-C. Kung, and M. Asghari, "Optical proximity communication with passively aligned silicon photonic chips," IEEE J. Quantum Electron. 45, (4), 409‒414 (2009). [CrossRef]
  14. A. V. Krishnamoorthy, R. Ho, B. O’Krafka, J. E. Cunningham, J. Lexau, and X. Zheng, "Potentials of group IV photonics interconnects for ‘red-shift’ computing applications," 4th IEEE Int. Conf. on Group IV Photonics, 2007, pp. 180‒182PLE2.1.
  15. A. Burr, "Turbo-codes: the ultimate error control codes?," Electron. Commun. Eng. J. 13, (4), 155‒165 (2001). [CrossRef]
  16. S. Gao, V. K. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon, ed., Communications, Information and Network Security, Kluwer Academic, 2003, ch. 5.
  17. I. S. Reed and G. Solomon, "Polynomial codes over certain finite fields," J. Soc. Indust. Appl. Math. 8, (2), 300‒304 (1960). [CrossRef]
  18. L. Song, M. Yu, and M. S. Shafter, "A 10 Gb/s and 40 Gb/s forward-error-correction device for optical communications," ISSCC, 2002, pp. 415‒416.
  19. D. Bertozzi, L. Benini, and G. D Micheli, "Low power error resilient encoding for on-chip data bus," Proc. 2002 Design, Automation and Test in Europe Conf. and Exhibition (DATE ’02), 4–8 Mar. 2002, pp. 102‒109.
  20. S. Roman, J. H. Ewing, F. W. Gehring, and P. R. Halmos, ed., Coding and Information Theory, Springer-Verlag, 1992, pp. 253‒278ch. 6.
  21. G. Castagnoli, S. Brauer, and M. Herrmann, "Optimization of cyclic redundancy-check codes with 24 and 32 parity bits," IEEE Trans. Commun. 41, (6), 883‒892 (1993). [CrossRef]
  22. G. Castagnoli, J. Ganz, and P. Graber, "Optimum cyclic redundancy-check codes with 16-bit redundancy," IEEE Trans. Commun. 38, (1), 111‒114 (1990). [CrossRef]
  23. P. Koopman and T. Chakravarty, "Cyclic redundancy code (CRC) polynomial selection for embedded networks," Proc. 2004 Int. Conf. Dependable Systems and Networks, 2004, pp. 145‒154.
  24. R. Ho, J. Lexau, F. Liu, D. Patil, R. Hopkins, E. Alon, N. Pinckney, P. Amberg, X. Zheng, J. E. Cunningham, and A. V. Krishnamoorthy, "Circuits for silicon photonics on a ‘macrochip’," IEEE Asian Solid-State Circuits Conf., Nov. 2009.
  25. "Transmission Control Protocol," RFC-793, 1981.
  26. CSIM 19 C++ Users’ Guide, Mesquite Software, Inc., 2005.
  27. "PPP in HDLC-like framing," RFC-1662, 1994.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited